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Abstract

We propose a simple yet effective multi-feature fusion
approach based on regression models for logo retrieval.
Rather than fusing original features, we focus on similar-
ities between pairs of images from multiple features, where
only an annotation of similar/dissimilar pairs of images is
needed. For each pair of images, a new vector is construct-
ed by concatenating the similarities between the image pair
from multiple features. A regression model is fitted on the
new set of vectors with similar/dissimilar annotations as la-
bels. Similarities from multiple features between the query
and database images can then be converted to a new sim-
ilarity score using the learned regression model. Initial-
ly retrieved database images are then re-ranked using the
similarities predicted by the regression model. Logo class
information from the training samples can also be included
in the training process by learning an ensemble of regres-
sion models for individual logo classes. Extensive experi-
ments on public logo datasets FlickrLogo32 and BelgaLogo
demonstrate the effectiveness and superior generalization
ability of our approach for fusing various features.

1. Introduction
Logo retrieval from a large dataset is an important top-

ic in content-based image retrieval for various academic and
commercial applications, such as logo and trademark detec-
tion, brand advertising and automatic logo annotation. The
task of logo retrieval focuses on searching same/similar l-
ogos given a query at the instance-level, where differen-
t logos should be well discriminated, rather than at the
category-level, where we only need to differentiate the logo
class from other object categories, such as person, animal
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Figure 1. Samples of pepsi and apple logos. Note that the pep-
si logos exhibit various scale and rotational changes but the color
distribution is relatively constant. In contrast, the apple logos ex-
hibit varied colors, but consistent shape.

and scenes. Although the standard bag of words (BoW)
approach [26] can be readily applied to this task, it is not
robust enough due to the fact that logos are usually blurred
due to camera motion or occupy only a small portion of
the entire image. In these cases, only a limited number
of or even no keypoints can be extracted, which makes the
BoW approach vulnerable. Other factors, such as viewpoint
change, rotation and distortion, make accurate logo retrieval
more challenging.

Nevertheless, a special property of logos which makes
it different from other image retrieval problems is that they
exhibit synthetic patterns and fixed or prominent color dis-
tributions. For example, as shown in Fig. 1, the pepsi logo
has a distinct color distribution that is composed of blue, red
and white, although it exhibits various scale and rotational
changes. In this case, as a global feature, color is more
powerful to capture higher level information compared to
local features, which may help us locate the correct logos
accurately and retrieve them effectively. Therefore, a single
feature may not effectively handle all the different varia-
tions and thus combining multiple complementary features
is a way to exploit the information that cannot be found by
a single feature alone.

However, how to combine multiple features still remains
an open question. Usually, to better capture distinctive lo-
cal and global patterns of logos from a large collection of
images, the dimensionality of feature vectors has to be ex-
tremely high. One has to use millions of visual words for
constructing BoW vectors or tens of thousands of dimen-
sions for Fisher Vectors (FV) [18] to obtain good perfor-
mance. It is prohibitively expensive both to store all fea-
ture vectors for a database containing millions of images,
as well as to learn weights from those features using any



classifiers. In addition, due to the large variation of di-
mensionality among different features, it is even more chal-
lenging to determine the relative importance of individual
features if they are simply concatenated, since the perfor-
mance of the concatenated feature is prone to be dominat-
ed by high dimensional features. Furthermore, for retrieval
tasks, we can only obtain a limited amount of labeled sam-
ples because manual annotation for millions of images is
impractical, while the appearance of database images can
be quite diverse. Moreover, we do not have any prior infor-
mation of and cannot make any assumption on the charac-
teristics of queries, which might be very different from the
database images. Learning on a small set of annotated sam-
ples, which do not sufficiently represent the entire database
and queries, is likely to generalize poorly.

We address the aforementioned problems by a simple yet
effective regression-based framework for multi-feature fu-
sion, which is only based on pairwise similarities between
images and does not rely on original feature vectors. Given
a training database with annotated similar/dissimilar pairs
of images, we compute the similarities using individual fea-
tures and convert them into a new data sample for each pair
of images, of which each dimension represents the similar-
ity corresponding to a specific feature type. A regression
model is fitted based on the set of new (training) data sam-
ples to generate a weight vector, which describes the impor-
tance of individual features from the similarity perspective.
For a query, we first obtain initial ranked lists of retrieved
images using individual features, and then apply the learned
regression model to the similarity vectors directly. The out-
put of the regression model corresponds to the fused sim-
ilarity which is then used for reranking the initial ranked
lists. To further increase the discriminative ability of the re-
gression model, we propose to utilize additional class label
information, and fit a regression model for each logo class
to obtain an ensemble of regression models. For each pair of
images, multiple new similarities are calculated as output-
s of the ensemble of regression models, which focuses on
the difference between similar/dissimilar images at a finer
level. The final similarity is further inferred by optimally
combining these new ensemble-based similarities. Learn-
ing is done offline while the inference of new similarities
is efficient and can be performed online in real time. Ex-
tensive experiments demonstrate that our regression-based
multi-feature fusion approach is very robust against several
unreliable features and is able to exploit the effectiveness of
individual best-performing features. Moreover, it general-
izes surprisingly well even when we use a relatively small
training set and can handle heterogeneous features as well
without any modifications.

2. Related Work
Logo retrieval. Instance-level object retrieval has been a

popular topic for years. Various algorithms have been pro-
posed and shown good performance on landmarks, scenes
and generic objects [2, 17, 9, 19]. Logo and trademark
retrieval has also been extensively studied in recent years.
Joly and Buisson [11] proposed a contrario normalization
of geometric consistency score for adaptively determining
the threshold of matching scores used for spatial verifica-
tion. In [14], a trademark and logo retrieval system was
presented. The MSER detector is incorporated with DoG
concept, so that it detects an interest region with both shape
and orientation information preserved, on which a shape de-
scriptor is further extracted. Retrieval is done by matching
descriptors of queries to a collection of stable regions gen-
erated by a training set. Fu et al. [6] combined SIFT, shape
and patch features with adaptive weights for logo retrieval.
It assumed that top 5 to 10 retrieved images are correct and
can be used to infer the importance of individual features,
which is not well justified. [23] used shape context descrip-
tors which are indexed by locality-sensitive hashing (LSH)
to improve the speed of k-NN search for queries.

Since logos from the same class usually have stable ge-
ometric patterns, previous works also attempted to encode
the spatial information particularly for logos. [12] proposed
to use multi-scale Delaunay triangulation to encode spatial
relationships of interest points close to each other, and rep-
resent them by signatures. Matching is performed by com-
paring the similarity between signatures of the query and
database images. Bundling min-hash [21] was also pro-
posed to group locally close keypoints and encode them us-
ing min-hash. A statistical model was learned in [20] to
down-weight the scores of keypoints which are frequently
matched in incorrect detections. More recently, [24] pre-
sented a logo recognition framework, where local features
are grouped as constellations and matched by minimizing
an energy function which considers the quality of feature
matching and co-occurrence of features.

Multi-feature for retrieval. There is abundant work on
fusing multiple features to improve retrieval performance.
In [4], multiple attribute features are combined by averag-
ing outputs of SVM classifiers. The score vector is then
concatenated with Fisher Vectors after normalization and
dimensionality reduction. Graph-based techniques are al-
so widely used in the literature. [29] proposed a graph-
based approach with relevance feedback to fuse multiple
features for image retrieval. Weights of individual features
are learned statistically from the retrieved results given a
large set of queries, and thus this method is not flexible if
we do not have any information of queries beforehand. [33]
converted initial ranked lists by individual features to graph-
s and combined them together. Similarities between images
are evaluated by Jaccard similarity, and graphs are equal-
ly summed up. Image attributes were used in [3] as labels
to search for anchors in the graph which are further used



for graph alignment. A complicated multi-graph learning
algorithm was also applied to learn a weight matrix from
multiple graphs. All graph-based works require similarities
between database images, which are not always available.
Similarly, [34] also utilized attributes learned from a large
dataset apart from the retrieval database. These attributes
provide additional information to refine the inverted file that
is originally constructed by SIFT visual words. Recently,
[35] constructed a 2D indexing file using SIFT and color
visual words. To our knowledge, there is no work on logo
retrieval that fuses multiple features without relying on the
inter-relationship between database images.

Multi-feature learning. Although numerous feature fusion
algorithms are available, we limit our focus only to a few
of them closely related to our work. Multi-kernel learning
(MKL) [13, 8, 7] was widely used to find the optimal com-
bination of kernels for image classification, where each fea-
ture type can be mapped to different kernels. Partial Least
Squares (PLS) analysis [25] was applied to dimension re-
duction of a high dimensional vector formed by multiple
feature vectors, which implicitly selects the most impor-
tant features. Canonical Correlation Analysis (CCA) [28]
was also effective to learn relationships of two sets of fea-
tures. A hierarchical regression algorithm was proposed
in [30] to exploit the information from individual features,
where the manifold structure of different feature spaces is
preserved. For cartoon image retrieval, [31] proposed a bi-
distance metric learning algorithm to learn a distance metric
from heterogeneous features. [32] decomposed multiple s-
core matrices by multiple features as a low rank matrix plus
feature-specific sparse errors. [5] proposed to learn logistic
regression models with sparsity regularization to determine
weights for visual words from multiple dictionaries for im-
age classification. Note that most of these approaches deal
with original feature vectors or require complicated opti-
mization and matrix operations.

3. Multi-feature Fusion
3.1. Problem formulation

Given an image database consisting of N images,
we can extract M visual features, each of which fo-
cuses on a specific aspect of images and thus are com-
plementary with each other. Our aim is to effective-
ly fuse these features to improve the retrieval perfor-
mance. Denote the feature vector obtained by m-th fea-
ture for an image Ii as fmi

1, we obtain a set of feature
vectors Fm = {fm1 , fm2 , ..., fmn , ..., fmN }. On the other
hand, for each image Ii, a set of feature vectors Fi =
{f1i , f2i , ..., fmi , ..., fMi } are used to describe the image

1For point features like SIFT, a BoW representation is not explicitly
created, so fm

i can be seen as a collection of SIFT features.

from different perspectives. By fusing features in Fi, we
hope to obtain a better image representation. The easiest
way is to concatenate all feature vectors in Fi to form a s-
ingle long vector, and directly use it for retrieval. However,
concatenation is not always a sensible way due to disparate
scaling and dimensionality of different feature vectors. An-
other straightforward approach is to learn the weight for
each feature using original feature vectors in Fi. In this
way, feature vectors are required for a learning model. Al-
though widely used in classification and recognition, it is
not practical for our logo retrieval task, where feature vec-
tors are usually high dimensional, i.e., millions of dimen-
sions, which cannot be easily stored and fed into the learn-
ing model. Also, we do not store an explicit BoW represen-
tation. Instead, it is more efficient to directly compute a dis-
tance between two images by computing a tf-idf score from
an index tree representing the database. Instead of relying
on the original feature vectors, we utilize the similarities be-
tween similar/dissimilar pairs of images to learn the weight
for each individual feature effectively and efficiently.

3.2. Training data derivation

For a pair of images Ii and Ij , we have two sets of
feature vectors Fi = {f1i , f2i , ..., fmi , ..., fMi } and Fj =
{f1j , f2j , ..., fmj , ..., fMj }, respectively. We employ a sim-
ilarity metric φm(fmi , f

m
j ) to quantitatively measure the

similarity between images Ii and Ij in terms of m-th fea-
ture. The metric φm(fmi , f

m
j ) can be any functions which

convert two feature vectors into a normalized scalar with a
fixed range [0,1], such as histogram intersection, L2 dis-
tance imposed a Gaussian kernel and tf-idf distance from
a vocabulary tree/feature index, etc. The similarity Φ(i, j)
between images Ii and Ij is then defined as

Φ(i, j) = [φ1(f1i , f
1
j ), φ2(f2i , f

2
j ), .., φM (fMi , fMj )]>

(1)
For each pair of images, we compute the similarity by Equa-
tion (1). Original features are not required anymore once we
have the similarities for annotated similar/dissimilar pairs.

For clarity, we replace φm(fmi , f
m
j ) and Φ(i, j) by

xmi,j and xi,j . Equation (1) can be re-written as xi,j =

(x1i,j , x
2
i,j , ..., x

m
i,j , ..., x

M
i,j)
>, where each dimension of xi,j

corresponds to a single feature. Essentially, this newly
derived vector represents the inter-relationship between t-
wo images in terms of similarities from multiple features.
Therefore, the multi-feature fusion problem is converted
from learning weights for original feature vectors to deter-
mining the importance of each dimension of xi,j . Since the
number of features used for the retrieval task is usually lim-
ited, xi,j is of manageable dimensionality and can be easily
processed.

Similarities from each individual feature are normalized,
so that 1 means the two images are the same while 0 mean-
s that they are totally different. Suppose similar/dissimilar



annotations for P pairs of images are provided, we obtain
a set of new samples X ∈ RM×P , where each column of
X represents the similarity vector between a pair of images.
We further assign labels to X so that y = 1 for similar im-
age pairs and y = 0 for dissimilar pairs. With training data
and labels, we will introduce our learning approach based
on regression models.

3.3. Regression model for weight learning

Although a binary classifier can be readily applied to the
training set, we are more interested in estimating the “sim-
ilarity level” given a new data point. In addition, the labels
do not have clear categorical meaning or strictly differen-
tiate similar pairs of images from dissimilar ones. There-
fore, we propose to fit a regression model on the training
set rather than classifying it into two disjoint classes. The
general form of a regression model is

y = R(w,x), (2)

where x is the derived feature vector and w is the weight
vector. y is the predicted value measuring the similarity
level of a given data x: how similar the two images are?
Larger y indicates higher probability that the two images
are similar. We aim to find a good weight vector w that
fits the training data and generalizes well on unseen images.
We have experimented with two regression functions: linear
regression and logistic regression.

Linear regression Linear regression is the simplest re-
gression function for linearly separable data. The formula-
tion of linear regression is

y = w>x + b, (3)

where b is the intercept. Least square analysis is often used
to find the optimal w. Regularization on w can also be
included. Linear regression assumes that the output y is
linearly correlated to the input data, which may not always
hold. Additionally, due to different scaling of multiple fea-
tures, the unbounded output is prone to be dominated by a
single dimension of the input data, while the effect of other
dimensions is diluted.

Logistic regression To handle the abovementioned sit-
uation, logistic regression is used. Basically, it is a normal-
ization by mapping the output of the linear regression to
[0, 1] using a sigmoid function. In this way, noise is sup-
pressed and the output is bounded. The formulation of lo-
gistic regression is

y = 1/(1 + exp(−w>x + b)). (4)

Gradient descent is usually adopted to find the optimal w.
The output y here has specific meaning: it indicates the
probability that the input data x has label 1. It is partic-
ularly suitable in our task where we need to measure the
probability of similarity between two images.

After obtaining the optimal regression model R from the
training data, we can use it during retrieval stage to im-
prove the performance. Given a query image Iq , we ini-
tially obtain a set of ranked lists, Lq = {L1

q, L
2
q, ..., L

M
q },

by comparing the similarities of original feature vectors
with respect to individual features. Each element in L is a
list of retrieved images ordered by the similarities between
feature vectors of the query and dataset images. Suppose
T database images are initially retrieved. Similar to the
training set, for each dataset image Ii, we have a vector
xq,i = (x1q,i, x

2
q,i, ..., x

m
q,i, ..., x

M
q,i)
> measuring its similar-

ity to the query from multi-feature perspective. If Ii is not
initially retrieved by m-th feature, xmq,i = 0. Applying the
learned regression model to xq,i, we obtain the probabili-
ty, yq,i = R(w,xq,i), of the similarity between Ii and Iq .
According to the new similarities {yq,1, yq,2, ..., yq,T } be-
tween every pair of the query and the dataset images, we
rerank the initially retrieved images to obtain the refined re-
sults. Since the computation of new similarities only in-
volves simple operations, the reranking process is extreme-
ly fast and can be easily incorporated into real-time retrieval
systems. In addition, the weights for individual features are
implicitly encoded by the weight vector w in the regression
model. They are not affected by dimensionality or scaling
of original feature vectors, so tend to be more robust against
noise and unreliable features.

3.4. Including class information

We have learned a single regression model on the entire
training data, where only annotations of similar/dissimilar
image pairs are needed. However, in some cases, training
samples have class labels annotated. For example, we may
have the labels adidas, dhl, and coca-cola for training im-
ages from three logo classes. Moreover, images from diver-
sified classes are much different from each other, where the
complex distributions of original similarities from multiple
features cannot be easily fitted by a single regression model.
Under such circumstances, we revise our original formula-
tion to introduce an ensemble of regression models utilizing
class labels of training data.

Suppose training data is from C disjoint logo classes,
{N1, N2, ..., Nc, ..., NC}, where Nc denotes the number of
images in class c,

∑
cNc = N . For class c, we assign la-

bel 1 to pairs of images within the same class, and label 0
to pairs of images between c and all other classes. A class-
specific regression model Rc is then learned from the train-
ing data. From C classes, we obtain an ensemble of class-
specific regression models R = {R1, R2, ..., Rc, ..., RC},
which model the similarity distribution of each logo class.

Given a query Iq , same process in Sec. 3.3 is performed
to obtain a new similarity ycq,i regarding the pair of Iq and a
dataset image Ii by each regression modelRc inR. In total,
we have C new similarities with respect to the pair (Iq, Ii),



denoted as the vector yq,i = (y1q,i, y
2
q,i, ..., y

c
q,i, ..., y

C
q,i)
>.

Then our task is to infer a single similarity ỹq,i from yq,i so
that ỹq,i is an optimal combination of the elements in yq,i.

Assuming that the regression models of different classes
are independent, mathematically, the inference can be writ-
ten as:

ỹq,i =

C∑
c=1

Rc(w,xq,i) · p(Rc|Iq, Ii), (5)

where p(Rc|Iq, Ii) represents the probability of the re-
gression model Rc given the pair of images (Iq, Ii).
Rc(w,xq,i) = ycq,i is the output from the regression mod-
el Rc, given the similarity vector xq,i. The probability
p(Rc|Iq, Ii) can be estimated by exploiting the relationship
amongst different classes within a Bayesian framework. In
this paper, we simplify Equation (5) and express it as a lin-
ear combination of the outputs of all C regression models:

ỹq,i = u>yq,i, (6)

where u is a weight vector. In practice, we assume
that all logo classes have equal probability, so that u =
p(Rc|Iq, Ii) = 1/C for c = 1, 2, ..., C for each element
u in u. ỹq,i is then a simple average of the outputs from
all C regression models. We will show in the experiments
that this technique leads to an improvement in performance
compared to applying a single regression model.

4. Experiments
4.1. Experimental setting

Datasets. We experiment with two logo datasets, FlickrL-
ogo32 [22] and BelgaLogo [11].

FlickrLogo32 contains 32 brand logo classes used for
logo detection, recognition and retrieval tasks. Each class
contains 70 images showing various scale and viewpoint
changes of the logo, of which 40 serve as database im-
ages and the remaining are query images. The separation
of database and query images is pre-defined and fixed for
all experiments. For retrieval tasks, 3000 non-logo images
are included in the database. Totally we have 960 query
images and 4280 database images.

BelgaLogo dataset includes 10000 images, where an im-
age may contain multiple logos or no logos. Two sets of
groundtruth are provided for different evaluation purposes.
The global groudtruth contains image level annotations of
26 different logo classes indicating whether a specific logo
is present in the images or not. 55 queries with localization
of logos (qset1) [11] are provided. The local groundtruth
includes 37 logo classes with bounding boxes, where 2697
images are used as internal queries (qset3) [16] and all the
other images serve as database images. The number of im-
ages for different logo classes greatly varies.

Figure 2. Samples of cropped logos from FlickrLogo32-crop.

Features. We have experimented with the following fea-
tures. We adopt Hessian affine keypoint detector with and
without orientation information, and describe detected key-
points by SIFT descriptors, denoted as shape2-oriented
and shape2. For global features, we extract LAB col-
or histogram from the entire image, denoted as image-
lab. We also adopt a compact color feature, Named Col-
or (NC) descriptor [27], as an additional feature represen-
tation, dubbed as image-nc. The NC descriptor is an 11D
histogram that is very efficient to compute and compare.
Despite of its low dimensionality, the NC descriptor have
a good discriminative power. Since logos usually only oc-
cupy a small portion of the whole image, the global color
features may not be useful in some cases. To compensate
this, we additionally apply the BING object detector [1] to
an image to first generate a set of potential patches which
may include logos, and then extract NC descriptors within
each patch, denoted as bing-nc. We also include spatial in-
formation by dividing each BING box in a spatial pyramid
manner, extract NC descriptor for each sub-patch and con-
catenate them to form a single feature vector. We denote
this feature as bing-nc-sp.

Parameters. The size of the vocabulary for our (implicit)
BoW representation is 1M. We extract 2000 BING boxes
on each image, and divide each BING box by a 3×3 grid to
include spatial information.

4.2. Results

4.2.1 Cropped logos

We first evaluate the performance of the proposed approach
on cropped logos of FlickrLogo32 dataset. We crop all lo-
gos out of the images according to the groundtruth bounding
boxes, and obtain a new dataset named FlickrLogo32-crop.
Note that there are cases where an image may contain multi-
ple logos. Discarding logos which are too small and blurred,
we obtain a total of 1802 logo images as the database, and
1347 logo images as the query set. All 3000 non-logo im-
ages remain unchanged. Some sample images of cropped
logos are shown in Fig. 2. We obtain the similar/dissimilar
annotations of all pairs of images from the database con-
taining 4802 images to learn the regression models.

We use shape2-oriented, shape2, image-lab and image-
nc in this experiment. The performance is evaluated by
mean average precision (mAP) over the query set. As a
baseline, we evaluate the performance using a simple equal-
weight (EW) linear combination of similarities from multi-



Table 1. Performance in terms of mAP (%) using individual features
Dataset 1. shape2-oriented 2. shape2 3. image-lab 4. image-nc 5. bing-nc 6. bing-nc-sp

FlickrLogo32-crop 53.32 46.46 8.06 11.89 - -
FlickrLogo32 57.15 51.90 - - 5.21 6.95

BelgaLogo (qset1) 22.07 20.06 - - 3.21 4.93
BelgaLogo (qset3) 17.84 14.32 - - 2.76 4.45

Table 2. Performance in terms of mAP (%) using different fusion
methods on FlickrLogo32-crop.

Fusion EW Linear Logistic

S A C S A C

1+2 56.16 55.73 56.20 56.27 56.2 56.36 56.27
1+2+3 11.48 17.58 20.21 22.85 55.21 55.81 57.71
1+2+4 19.47 27.05 28.91 31.10 56.27 57.24 58.94

all 13.58 22.96 22.93 25.24 56.33 57.16 59.07

Table 3. Performance in terms of mAP (%) using different fusion
methods on FlickrLogo32.

Fusion EW Linear Logistic

S A C S A C

1+2 60.75 57.23 60.81 60.94 60.63 60.63 60.65
1+2+5 16.69 53.09 38.89 39.21 62.17 62.14 62.40
1+2+6 20.24 53.73 39.44 39.81 62.25 62.14 62.63

all 13.54 54.36 41.16 40.99 62.09 62.22 62.53

ple features. In addition, to thoroughly evaluate the per-
formance of our regression based fusion approach, we test
three variants of our framework:

• SINGLE (S): only one regression model is learned
from all training data as explained in Sec. 3.3.

• AVG (A): we include class labels and learn an ensem-
ble of regression models as in Sec. 3.4. The final sim-
ilarity value is calculated by Equation (6) with the as-
sumption that all logo classes have equal probability.

• CLASS-SPEC (C): we assume the class label of a
query is available, and then apply the corresponding
regression model to obtain the new similarity. This
variant is not practical in reality, but it provides an up-
per bound of our approach, helping better understand
the performance of our approach.

The results are shown in Tables 1 and 2, from which we
can make the following observations. First, EW is good e-
nough if features are not complementary (shape2-oriented
and shape2). Second, regression is always better than EW
since weights of features are learned from data. Third, EW
and linear regression are easily affected by a single weak
feature, while logistic regression is very robust and always
improves performance. Fig. 3 shows the retrieval perfor-
mance for each individual logo class when fusing all four
features. This clearly shows that logistic regression based
fusion achieves the best results for most classes. For exam-
ple, shape2-oriented achieves the best mAP for aldi logos,
and image-nc is the best for dhl logos. In both cases, the
logistic regression model successfully captures the best in-
dividual features and improves the performance according-
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Figure 4. Bar plot of weights learned by the logistic regres-
sion models for individual features on all logo classes in
FlickrLogo32-crop.

ly. We further visualize the weights of individual features
learned by the ensemble of logistic regression models on all
training logo classes in Fig. 4 where the class-conditional
adaptive weighting of individual features is clearly demon-
strated.

4.2.2 Non-cropped logos

We further conduct experiments on the original FlickrL-
ogo32 dataset. We replace the global color features image-
lab and image-nc by bing-nc and bing-nc-sp, because a
global color descriptor extracted from the whole image con-
taining a large portion of background is unlikely to work
well, given that it only achieves around 10% mAP on
cropped logos without background. We use the partition-
s for database images and query images specified in [22].
The only difference between our experiments and [22] is
that queries in our experiments are specified by a bounding
box enclosing the logo. Since there are multiple logos in a
single image, we treat them as independent queries, and a-
gain have 1347 queries as in Sec. 4.2.1, while the number of
database images is 4280. The maximal similarity between
the query bounding box and all BING boxes from a sin-
gle database image is chosen as the similarity between the
query and the database image. Results are shown in Table 1
and 3. Note that our results are not directly comparable to
[22] since [22] always uses the entire image as a query.

Qualitative results of retrieved images for three sample
queries are shown in Fig. 5. For the query on the left, lo-
gistic regression fusion is able to achieve significantly high-
er AP compared to any of the individual features. For the
middle query, shape2 achieves higher AP than the color fea-
tures, while bing-nc achieves higher AP for the right query.
Still, in both cases, our logistic fusion is able to achieve
even higher AP while the simple equal-weight (EW) fusion
performs poorer than the individual features. Fusion us-
ing logistic regression discovers similar images which were
previously ranked much lower, and thus significantly im-
proves the quality of retrieved results.
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Figure 3. Bar plot of the mAP by individual features and different fusion methods on all logo classes from FlickrLogo32-crop. Logistic
regression successfully captures and utilizes the best feature in most cases. See text for details.

Figure 5. Retrieved results by individual features and fusion by logistic regression (AVG) for three queries from FlickrLogo32. For each
query shown in the first row, the five rows below it show the top 8 retrieved results. We also show the Average Precision (AP) using
individual features and different fusion methods. Images with red bounding boxes are the correct matches.

4.2.3 Generalization analysis

Varying train/test splits. The above experiments assume
that the query logo belongs to one of the logo classes in the
training set. However, it is not a realistic assumption due
to the enormous number of potential logo classes which we
may not have training data for. In this section, we will eval-
uate the generalization ability of our fusion method (logistic
regression) when the query logo is outside the training logo
classes.

We partition the database images from FlickrLogo32-
crop dataset into two random subsets with disjoint logo
classes. The two subsets serve as training and test sets,
respectively, so that all images belonging to a logo class
go to either the training or the test set. We learn a regres-
sion model independently for each logo class in the train-
ing set. The query set is also divided into two disjoint sets
– “train query” and “test query” – corresponding to the s-
plit of the logo classes into training/test sets. Thus, given
a “train query”, we only retrieve images from the training
set. Similarly, we only retrieve images from the test set for
a “test query”. For both “train query” and “test query”, the
new similarity is calculated by averaging the output of all
regression models. The performance on “train query” and
“test query” is evaluated separately. Results averaged across
10 random train/test splits are shown in Table 4.

Our fusion method using logistic regression is very ro-
bust: even using only 25% database images for training, we
still obtain comparable mAP to the results obtained using

Table 4. Comparison of different train/test splits in terms of mAP
(%). We combine shape2-oriented, shape2 and image-nc.

Dataset Train/Test EW Logistic (AVG)

Train Test Train Test

FlickLogo32-crop
75%/25% 19.58 19.15 57.26 56.06
50%/50% 19.59 19.36 55.00 59.49
25%/75% 21.91 18.66 59.00 56.49

75% database images for training, which means that the re-
gression models trained on 8 logo classes generalize well
across the disjoint 24 (test) logo classes. By using logis-
tic regression models, we always improve the performance
compared to EW that is sensitive to individual features and
train/test splits. Therefore, using the ensemble of logistic
regression models with equal probability, we can ensure a
performance improvement even when the query logo is not
from the logo classes used in the training set.

Transfer between datasets. We have evaluated the gen-
eralization ability of our fusion method on FlickrLogo32.
Nevertheless, in realistic scenarios, we cannot always have
enough annotated training data for each database. In this
case, we aim to learn a model from a database consisting of
abundant training data and apply it to another database with
limited or no labeled data. Specifically, we train regression
models on all images from FlickrLogo32 dataset and ap-
ply them to BelgaLogo dataset, where logos only occupy a
very small portion of the entire image in most cases. We
evaluate the performance in terms of mAP using two sets of
queries, qset1 and qset3. Results by individual features and



Table 5. Performance in terms of mAP (%) by different fusion
methods by transferring learned models on FlickrLogo32 to Bel-
gaLogo.

Dataset Fusion Query EW Linear Logistic

S A S A

F→ B all qset1 8.24 21.62 16.85 26.29 26.28
qset3 7.04 18.91 14.24 21.94 21.71

Table 6. Comparisons of results by ESR, RVP and logistic regres-
sion (AVG) in terms of mAP (%) on 6 logo classes of qset3 from
BelgaLogo.

Base Dexia Ferrari Kia Mercedes President Overall

ESR 17.9 11.7 5.2 49.7 18.0 44.6 24.5
RVP 20.8 15.3 1.3 50.6 21.5 67.5 29.5
Ours 52.4 24.1 34.0 41.2 11.0 76.4 39.9

fusion methods on the two sets of queries are shown in Ta-
ble 1 and 5. Our fusion method still significantly improves
the performance on BelgaLogo, even after training a single
logistic regression model on a completely different dataset.

We further compare our results on BelgaLogo with ES-
R [15] and RVP [10], where 6 logo classes are evaluated.
mAP is evaluated for all queries in each class and an over-
all mAP is also computed. Results are shown in Table 6.
Our approach by logistic regression (AVG) significantly im-
proves the performance on 4 classes and achieves the best
overall mAP.

5. Conclusion

We presented a multi-feature fusion by similarity regres-
sion for logo retrieval, which only relies on pairwise sim-
ilarities between images and does not require original fea-
ture vectors. For each pair of images, we construct a new
sample by concatenating the similarities from multiple fea-
tures. With annotations of similar/dissimilar pairs of im-
ages, a regression model is fitted on the set of new samples.
Incorporating logo class labels, we learn an ensemble of re-
gression models to better capture the inter-class variance. A
new similarity between a query logo and a database image
can be inferred from the learned regression models using o-
riginal similarities from multiple features. Extensive exper-
iments with two regression functions and various parameter
settings have demonstrated that the logistic regression mod-
el performs very well. In addition, the regression model
generalizes well on unseen logo classes and completely dif-
ferent datasets.
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