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Abstract

Important diagnostic criteria for glaucoma are changes
in the 3D structure of the optic disc due to optic nerve dam-
age. We propose an automatic approach for detecting these
changes in 3D models reconstructed from fundus images
of the same patient taken at different times. For each time
session, only two uncalibated fundus images are required.
The approach applies a 6-point algorithm to estimate rela-
tive camera pose assuming a constant camera focal length.
To deal with the instability of 3D reconstruction associated
with fundus images, our approach keeps multiple candidate
reconstruction solutions for each image pair. The best 3D
reconstruction is found by optimizing the 3D registration of
all images after an iterative bundle adjustment that toler-
ates possible structure changes. The 3D structure changes
are detected by evaluating the reprojection errors of feature
points in image space. We validate the approach by com-
paring the diagnosis results with manual grading by human
experts on a fundus image dataset.

1. Introduction
Glaucoma, the second leading cause of blindness in the

United States and world-wide, results in vision loss because
of a characteristic form of atrophy of the optic nerve. Sta-
bility or change in the 3D structure of the optic disc is an
important criterion in the evaluation and treatment of glau-
coma. Traditionally, a clinician obtains a 3D perception of
the optic disc surface by looking through a stereoscope at
two fundus images taken from slightly different viewpoints.
Fig. 1 shows a typical pair of stereo fundus images where
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the optic disc is the bright circular region in the image cen-
ter, highlighted in the left image. By alternating between
two stereo images taken at different times, the clinician can
make a judgment if the optic disc area does or does not have
interval structural changes, including 3D changes. How-
ever, this judgment is subjective and difficult because of
variations in stereo baseline, alterations in camera pose, etc.

(a) (b)

Figure 1. A typical pair of stereo fundus images. The bright cir-
cular region in each view and highlighted in the left image is the
optic disc.

In recent years, emerging technologies such as OCT are
available for in vivo 3D ocular imaging with high reso-
lution, but OCT instruments are expensive, continuously
evolving with instrument-specific image formats, require
special capture sessions, and are still being investigated for
improved glaucoma diagnosis. Up to now, fundus photog-
raphy remains the ”golden standard” for glaucoma studies
and diagnosis, despite the limits of photography. To over-
come the subjective nature in traditional photograph-based
diagnosis and to develop a convenient, diagnostically accu-
rate, format-independent method to assess the optic disc in
glaucoma, we propose a quantitative approach to evaluate
changes in 3D structure based on computer vision. The ap-
proach requires only two stereoscopic fundus images cap-
tured at two different times in an individual subject. The
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fundus images can be uncalibrated with unknown intrinsic
and extrinsic parameters, the typical clinical scenario.

3D retinal reconstruction from stereoscopic fundus im-
ages is very challenging due to several reasons. First, tra-
ditional stereo matching algorithms have great difficulties
in matching fundus images because of low-texture, low-
contrast, image blur, non-Lambertian reflectance, and noise
from the illumination conditions [10]. Second, most of the
retinal surface in a fundus image is nearly planar except the
optic disc area [1, 4]. The scene of a flat plane is a degen-
erate case for estimating epipolar geometry. Third, fundus
images are usually uncalibrated, and only a quite limited
number of archived images may exist in the clinical record
of a patient. Besides these challenges in 3D reconstruction,
detecting the subtle changes related to glaucoma progres-
sion from the reconstructed 3D models poses additional dif-
ficulties.

1.1. Previous work

Most prior works on image-based computer-assisted
glaucoma diagnosis focused on computing 2D image fea-
tures that are indicative of the disease, such as the ratio
between the area of optic disc and the area of optic cup
[15, 14]. However, accurate segmentation of optic disc and
optic cup from 2D images can be very difficult depending
on the illumination condition and the camera viewpoint. In
addition, some important information such as the changes
in the 3D depth and slope of the optic cup and the 3D posi-
tion shift of blood vessels due to optic nerve damage cannot
be retrieved with these 2D approaches.

3D reconstruction from stereo fundus images has been
studied in [10, 6] in which the images come from fixed-
base stereo fundus cameras with known epipolar geometry.
However, simultaneous stereo fundus cameras are not avail-
able in most clinics. The most cost-efficient way of obtain-
ing stereo fundus images is by taking images sequentially
with a monocular fundus camera from different viewpoints,
in which camera focal length and the epipolar geometry be-
tween images are unknown.

In [1], Choe and Medioni proposed a 3D metric recon-
struction approach for uncalibrated fundus images. Due to
the near-planar shape of retinal surface, the approach ex-
ploits a plane+parallax strategy [3] for epipolar geometry
estimation. The 3D model of the retinal surface, the camera
focal length and camera pose of each image are estimated
through a 3-pass bundle adjustment. The initial 3D model
of the retinal surface input to the bundle adjustment is as-
sumed to be a flat plane parallel to the image plane of the
reference image and with the same size of the image. How-
ever, depending on the actual camera focal length and the
view angle of the reference image, this approach may yield
a bad initial solution and cause the bundle adjustment to
snag in a local minimum. In addition, [1] did not address

the problem of detecting changes in the reconstructed 3D
models for disease diagnosis.

Kuthirummal et. al. [4] proposed a change detection
algorithm for glaucoma diagnosis by aligning 3D models
reconstructed from uncalibrated fundus images. Similar to
[1], the plane+parallax strategy is used for epipolar geome-
try estimation. However, instead of achieving a metric up-
to-scale 3D reconstruction, the approach only obtains a pro-
jective reconstruction in which the 3D model differs from
the ground truth by an unknown projective transformation
[2]. To align and compare reconstructed 3D models from
different time sessions, a 3D homography is estimated be-
tween the two projective 3D models. By computing the dis-
tance from a 3D point in one 3D model to its closest point
in the other model after alignment, a changed 3D point is
identified if the distance is larger than a threshold.

There are two significant problems with the above ap-
proach in [4]. First, due to the inherent difficulty in 3D
reconstruction from two fundus images, the projective 3D
model reconstructed separately for each time session can
have significant errors, often leading to significant align-
ment error between 3D models. Therefore, the distance
between corresponding 3D points can be caused by inac-
curacy in the reconstructed 3D models and alignment error
between the models instead of actual structure changes in
the optic disc. Bundle adjustment has been widely applied
in multi-view camera geometry [2] that does non-linear op-
timization to the initial 3D reconstruction and all the camera
parameters jointly, but it is not applied in [4] because the 3D
reconstruction is not metric. Another problem is the uncer-
tainty in selecting an optimum threshold on the 3D distance
for change detection since the distance is defined in an un-
known projective space. Therefore, instead of automatically
generating a diagnosis decision, the system only provides a
tool for visualizing possible changes by manually varying
the threshold.

1.2. Overview of our approach

To overcome the difficulty of epipolar geometry estima-
tion for a near-planar surface, we exploit an additional con-
straint based on the fact that camera focal length is usu-
ally kept constant during each time session, even if differ-
ent sessions can have different focal length. A RANSAC
process based on the 6-point algorithm in [9] is applied for
estimating the camera focal length and the relative pose be-
tween two fundus images from a set of feature correspon-
dences. After triangulation, metric 3D reconstruction can
be obtained.

Because multiple possible solutions exist based on the
6-point algorithm [9] and also for making the approach less
sensitive to noise from feature matching, instead of keeping
a single best solution as in the traditional RANSAC pro-
cess, we construct a list of top candidate reconstruction so-



lutions for a pair of fundus images. To select the top can-
didates, not only the number of point match inliers but also
the shape of the 3D model is considered since we have a
prior knowledge of the possible shape of a retinal surface.
For each possible 3D reconstruction, the camera poses of all
the images from different time sessions are estimated rela-
tive to the 3D model. Bundle adjustment is then applied
to optimize the 3D model, camera focal length, and camera
pose of each image jointly. To handle possible 3D struc-
ture changes between different time sessions, in the bundle
adjustment we distinguish feature matches across all views
and feature matches for each separate time session.

In the end, the optimal 3D reconstruction is selected as
the one with the best 3D registration across all views. Since
the reconstruction is up to an unknown scale, unlike the ap-
proach in [4] that sets a threshold on the distance between
corresponding points in 3D space, we identify changed fea-
ture points by examining their reprojection errors in each
image. To evaluate the performance of the approach, the
automatic diagnosis results are compared with the manual
gradings by glaucoma experts on a fundus image dataset
consisting of 7 eyes with interval glaucoma changes and 14
eyes without changes, in which the precision and recall rates
of our approach are 75% and 85.7% respectively. To the
best of our knowledge, ours is the first work based on 3D
analysis that reported statistical results of automatic glau-
coma diagnosis.

The remainder of the paper is organized as follows: in
Section 2 we describe the feature matching between fundus
images. Section 3 gives details on the metric 3D reconstruc-
tion from two fundus images with RANSAC based on the
6-point algorithm. Section 4 introduces the bundle adjust-
ment process for aligning all the images in 3D with possible
structure changes. Section 5 presents the change detection
criteria. In Section 6, some experimental results and discus-
sion are given, and the paper is concluded in Section 7.

2. Image matching
Detecting feature correspondences between images is

usually the first step for image-based 3D reconstruction.
Image matching for fundus images is challenging because
of low-texture, non-Lambertian reflectance, large illumina-
tion variations, and image blur due to eye movement and
camera defocus. Several techniques exist for matching fun-
dus images. In [1], ’Y’ features and mutual information
based template matching are used. A multi-scale stereo
matching approach is presented in [10] based on a modi-
fied normalized cross-correlation. While any of the match-
ing techniques for fundus images can be incorporated into
our 3D reconstruction and change detection pipeline, in the
present work we use a two-step approach similar to that in
[4] for matching two fundus images.

The approach is based on the observation that in a fundus

image the retinal surface is nearly planar outside of optic
disc. Two images of a 3D plane are related by a homog-
raphy transformation [2]. Therefore, the first step of the
approach is to estimate the homography from a set of SIFT
features [5] detected outside of the optic disc area. To aid
this, the approach in [12] is used for optic disc segmenta-
tion. Based on the estimated homography, one of the im-
ages is warped to the other. The remaining image parallax
is due to 3D structures off the plane.

As noted in [4], SIFT matches are typically not dense and
accurate enough for 3D reconstruction from low-textured
fundus images. Therefore after correcting the global image
transformation with the homography warping, Normalized
Cross-Correlation (NCC) is used for more accurate feature
matching. In [4], Harris corners are used as feature points.
However, due to low-textureness, Harris corners are usually
not well distributed in a fundus image. Since blood ves-
sels provide the major image texture, we uniformly sample
image points (a point for every 15 pixels for images with
2000x1712 pixels in our experiments. Note that all parame-
ters of our approach are chosen empirically.) along the cen-
tral lines of vessels as feature points. Vessel fragments are
extracted automatically with an approach similar to [11]. In
addition, Harris corners are also detected inside the optic
disc area that capture features from non-vessel structures.
Fig. 2 shows an example of the blood vessel extraction and
the feature points.

(a) (b)

Figure 2. Left: automatically extracted blood vessel fragments.
Right: feature points that are on vessel fragments or that are strong
Harris corners inside the optic disc area.

For a feature point in one of the images, its correspond-
ing point in the other image is the pixel with the highest
NCC matching score in its neighborhood. Since only the
optic disc area has significant parallax after the image warp-
ing, the required search neighborhood is smaller for the fea-
ture points outside the optic disc than that required for the
inside points (10x10 and 25x25 pixels respectively in our
experiments).

3. Metric 3D reconstruction from two images
The near-planarity of the retinal surface makes accurate

epipolar geometry estimation difficult since a planar scene



is a degenerate case for estimating epipolar geometry. The
plane+parallax strategy is used in [1, 4] to deal with this
problem. However, it is still sensitive to the noise in feature
matching since most parallax is from the optic disc area that
is usually a small part of the whole fundus image . There-
fore, we exploit additional constraints on camera intrinsic
parameters to make the estimation more robust and accu-
rate. Another important advantage of our approach is that
an estimation of camera focal length and a metric 3D recon-
struction can also be obtained.

Similar to [1] and many structure-from-motion ap-
proaches [8], we assume that a fundus camera has square
pixels, no skew and with the principle point at the image
center. In other words, the only unknown camera intrinsic
parameter is the camera focal length. In addition, although
camera focal length can vary between different time ses-
sions, we assume it is fixed during each session. This is
true in most cases since fundus stereo images are typically
captured sequentially without varying the zoom setting with
the same session. With these assumptions, from 6 point cor-
respondences between two images, the camera focal length
and the fundamental matrix can be calculated with the ap-
proach in [9]. However, there can be up to 15 possible solu-
tions. From each solution, the relative camera pose between
the two images can be computed [2], and further a 3D point
cloud can be reconstructed from the point matches after tri-
angulation [2]. This reconstruction is metric with only an
unknown scale.

Given a set of detected point matches containing possi-
ble outliers, RANSAC [2] based on the 6-point algorithm
is applied to estimate the epipolar geometry. To avoid the
degenerate case in which all 6 points are on a plane, each
random sample of 6 point matches has at least one point
match from the optic disc area.

Since the solution of the 6-point algorithm [9] is not
uniqueor, and also for making the approach less sensitive
to the noise and errors in point matches, unlike the regular
RANSAC process in which only a single best solution is se-
lected, we generate a list of top candidates. Each candidate
solution is then used as a seed to initiate the bundle adjust-
ment described in Section 4 that does 3D alignment across
all time sessions. In the end, the optimal solution is selected
as the one that achieves the best 3D alignment.

3.1. Shape analysis for selecting candidate 3D re-
construction solutions

To select the top candidate solutions during the
RANSAC process, not only the number of inliers among the
point matches is a selection criterion, we also check if the
reconstructed 3D model looks like a retinal surface, a nearly
planar surface with an appropriate ”cup shaped” optic disc
in the middle. This model represents the most typical retinal
structure near the optic disc area, and is also used in prior

works by other researchers such as [1].
First, Cheirality check is applied to remove any solutions

in which not all of the 3D points are in front of both cam-
eras. A 3D plane is fit to the 3D points outside of the optic
disc area. The thickness of the plane is the average dis-
tance of the 3D points to the plane. After projecting the
3D points onto the plane, the width and height of the plane
are defined to the length of the major and minor princi-
ple axes of the 2D projections respectively. A reasonable
plane of the retinal surface should be thin and have an as-
pect ratio close to that of the fundus image. In our ex-
periments, if thickness/height > 0.1 or the aspect ratio
height/width < 0.4 , the 3D plane is regarded as out of
shape and the solution will be discarded. Note that the pa-
rameters used for the model fitting in our approach allow
considerable deviation from the ideal model so that the prior
model constraint is relatively relaxed.

Since the optic cup is a depression in the center of the
optic disc and projects away from the camera center in each
fundus image, to see if the 3D points inside the optic disc
form the general shape of a cup, we check if most of them
are off the plane and are on the different side of the plane
relative to the camera centers. A 3D point is off the plane if
its distance to the plane is larger than the plane thickness. In
our experiments, if over 30% 3D points inside the optic disc
area are off the plane and on the different side than the cam-
era centers, and less than 10% points are on the same side
as the camera centers, we say the optic disc forms a cup;
otherwise, the reconstruction solution will be discarded.

(a) (b) (c)

Figure 3. Three possible 3D reconstruction solutions. Left: a re-
construction solution with an unreasonable shape. Middle: a re-
construction solution with focal length = 2666 pixels. Right: a
reconstruction solution with focal length = 5257 pixels. In each
image, the red and white points are points inside and outside the
optic disc area respectively, and the viewing direction is parallel to
the plane of the retinal surface.

The process for selecting the best reconstruction solu-
tions can be summarized as follows. During the RANSAC,
we keep the top 100 solutions that have the most number
of point match inliers that satisfy the estimated epipolar ge-
ometry. To avoid keeping very close solutions, we require
the candidate solutions that have sufficiently different focal
length to each other (10% difference in our experiments).
Out of the 100 solutions, the ones that do not pass the shape
verification will be discarded. On average, about 20 candi-
date solutions will be kept for each time session.



Fig. 3 illustrates an example of possible reconstructions
from two stereo fundus images. The left model is out of
shape and will be discarded even if this reconstruction so-
lution has the most number of point inliers. The middle and
the right reconstruction solutions have reasonable shape and
almost the same number of inliers. However, they have very
different camera focal length (2666 pixels and 5257 pixels
respectively), therefore it is necessary to keep both of them
as candidates.

4. 3D alignment with bundle adjustment
In order to detect if there are structure changes between

two time sessions, we need to align the 3D reconstructions
from different sessions in the same space. This is based on
the assumption that a significant part of the retinal surface
especially outside of the optic disc area is unchanged and
can be used for alignment. Since each reconstructed 3D
model may have significant errors, directly aligning two 3D
models as in [4] is difficult. Instead, we select the recon-
structed 3D model of one time session as the reference, and
estimate the camera pose of each image in the other ses-
sion relative to it. The 3D model, camera focal length and
camera pose of all images are then jointly optimized in an
iterative bundle adjustment process.

Given a 3D model of the first time session and to esti-
mate the camera pose of an image in the second session, we
need to have a set of 2D-3D correspondences, which can
be obtained by detecting the feature correspondences be-
tween the image and a reference image in the first session.
In addition, we need to know the camera focal length of the
image. The possible values of this focal length are given
by the candidate 3D reconstructions of the second time ses-
sion. For each possible focal length, the camera pose of the
image can be estimated with the 3-point algorithm [7].

Since bundle adjustment is computationally intensive, to
reduce computation we do not run bundle adjustment for
each combination of a possible 3D model of the first ses-
sion and a possible focal length of the images in the sec-
ond session. Instead, we rank all the possible combinations
based on the total number of point inliers during the cam-
era pose estimation. Only the top 50 combinations with the
most number of inliers are kept.

Bundle adjustment does a nonlinear optimization on the
initial 3D point cloud, camera focal length and camera pose
by minimizing the reprojection errors of the 3D points in the
images. Since there can be structure changes between the
two time sessions, some 3D points may only appear in one
of the sessions. Therefore, in our bundle adjustment there
are 3 groups of 3D points: the points that are shared be-
tween both time sessions; those, only in the first session;
and those, only in the second session respectively. The
shared 3D points constrain the camera pose of all images
jointly while the other 3D points only constrain the camera

pose of the images in their corresponding session.
Each shared 3D point corresponds to a feature track

across all images. To detect the feature tracks, an arbitrary
images in the first session is selected as the reference image.
The feature points of the feature tracks in the other image of
the first session and in the first image of the second session
are obtained by matching these images with the reference
image. However, the corresponding feature points in the
second image of the second session are obtained by match-
ing it with the first image of the second session instead of
the reference image because matching between images of
the same session is more reliable than that between images
of different sessions.

The 3D point associated with a feature track may be an
outlier because it may correspond to a structure change be-
tween different sessions. Therefore, for each feature track,
we also create a 3D point that has corresponding feature
points only in the images of the first session, and similarly
a 3D point only for the second session. These 3D points
place constraints on the camera pose of images in each ses-
sion separately. They share the same 2D feature points with
the feature track in the corresponding images but they are
independent 3D points in the bundle adjustment. The initial
position of the shared 3D point and the 3D point in the first
session are calculated from the feature points in the images
of the first session with triangulation while the initial posi-
tion of the 3D point in the second session is computed from
the images of the second session.

In addition, outliers of the 3D points should not be in-
cluded in the bundle adjustment. A 3D point is an outlier if
its reprojection error in one of its associated images is larger
than a threshold (5 pixels in our experiments). Initially, the
large reprojection error of a 3D point can be caused by in-
accuracy of its initial 3D position and camera poses rather
than wrong matches. After the bundle adjustment, the 3D
points and camera pose are refined and some of the initial
outliers can become inliers. Therefore, instead of a single
run of bundle adjustment, we do several iterations. At each
iteration, we recompute the inliers of the 3D points and
rerun the bundle adjustment on the inliers. The iterations
stop when the number of inliers cannot be further increased.
Each run of the bundle adjustment minimizes the following
error:

E =

N∑
k=1

4∑
i=1

|PiX
1
k − uki|2

+

N∑
k=1

2∑
i=1

|PiX
2
k − uki|2 +

N∑
k=1

4∑
i=3

|PiX
3
k − uki|2, (1)

where the 3 items are the sum of the reprojection errors for
the 3 groups of 3D points: shared 3D points, 3D points in
the first session and 3D points in the second session respec-
tively. The images are numbered from 1 to 4 with the first



two images from the first session and the last two images
from the second session. Pi = Ki[RiTi] is the projection
matrix of image i. xj

k is the k-th 3D point in group j, and
uki is its 2D measurement in image i. N is the number of
3D points in each group.

For efficiency, the multi-core implementation of bundle
adjustment based on GPU [13] is used in our experiments.
After running the iterative bundle adjustment for each of
the top 50 combinations of a candidate 3D model in the first
session and a candidate focal length of the images in the
second session, the best 3D reconstruction is selected as the
one with the most number of point inliers.

5. Change detection and glaucoma diagnosis
Once we obtain the camera pose of all images in the

same coordinate system, one way to detect changes between
different time sessions is to do a dense 3D reconstruction for
each session and detect the 3D points in the first 3D model
whose distance to their closest points in the second model is
larger than a threshold, which is similar to the approach in
[4]. However, there are 3 problems with this strategy. First,
since the 3D reconstruction is up to an unknown scale, it is
hard to set a good threshold on the distance. Second, a large
portion of a fundus image lacks texture while 3D recon-
struction for low-texture image area is not accurate. Third,
3D reconstruction from images with small baseline is sensi-
tive to the noise in feature matching, therefore directly com-
paring two 3D points in two independently reconstructed
3D models without joint bundle adjustment may not be re-
liable.

Our approach for change detection is based on the bundle
adjustment result obtained in Section 4. Instead of setting a
threshold on a 3D distance, we analyze the reprojection er-
rors of the 3D points in 2D images. The outliers among the
3D points shared by both time sessions whose 2D reprojec-
tion errors in one of the images are larger than a threshold
(3 pixels in our experiments) are good indicators for struc-
ture changes. In addition, these feature points are either on
vessel fragments or are strong Harris corners, both of which
have relatively rich texture.

However, the outliers of the shared 3D points may also
be caused by wrong feature matches. To remove these out-
liers, we first remove the feature tracks that do not sat-
isfy the epipolar geometry between the images of the first
session or that between the images of the second session.
These outliers are obviously due to wrong matches between
the images in the same session. For the rest of the out-
liers, we find that those due to structure changes usually
form clusters in an image since the changed areas usually
have a certain size, whereas those due to wrong matches are
usually isolated from each other since they are caused by
random noise. Fig.4 gives an example. In Fig.4a, the point
outliers are dense and form clusters reflecting the structure

changes in the optic disc. In Fig.4b, the isolated outliers are
due to wrong feature matches instead of structure changes.

Therefore, we cluster the outliers in the reference image
based on their image distance. Two outliers are in the same
cluster if their distance is less than a threshold (15 pixels in
our experiments). The clusters with less than 3 points are
removed. In the end, if there are still outliers in the optic
disc area in the reference image, we conclude that the pa-
tient’s optic disc has undergone interval change between the
image sets. In addition, the locations of the outliers indicate
where the changes are.

(a) (b)

Figure 4. Left: outliers due to structure changes form clusters.
Right: isolated outliers are caused by wrong feature matches.

6. Experiments and Discussions
To evaluate the approach, we assessed the automatic di-

agnosing results against clinical dataset of 21 image se-
quences. These images were selected and manually graded
by consensus by a glaucoma-trained clinical coordinator
and a glaucoma subspecialist. Each image sequence has
two stereo pairs of fundus images that were taken at two
different times of the same eye of a patient. Among the 21
image sequences, 7 sets from different patients were graded
as having interval glaucoma changes. The other 14 image
sequences, each from different patients, are known to have
no changes because they comprised separate stereo image
sets acquired on the same day.

The acquisition of these images occurred between 1990
and 2013. The average image quality is worse than that of
the images from simultaneous stereo cameras used in [10]
with more noise, and inconsistent image blur and large il-
lumination changes between the images in the same stereo
pair. However, the quality of the images we studied is typ-
ical of those acquired in clinical practice. As an example,
Figure 5 shows an image sequence in our dataset with glau-
coma changes in the optic disc.

The change detection result of our approach is summa-
rized in Table 1. Out of the 7 images sequences that are
graded as having glaucoma progression by the experts, our
approach correctly labeled 6 of them as having changes and
mistakenly labeled one sequence as having no changes. Out
of the 14 image sequences that have no glaucoma changes,



(a) (b)

(c) (d)

Figure 5. An example image sequence in our dataset. There is
glaucoma progress in this sequence. First row: two stereo fundus
images taken in 2005. Second row: two stereo fundus images
taken in 2006 of the same eye.

the approach made the correct labeling for 12 of them and
made the wrong labeling for the other 2 as having changes.
Therefore, the precision and recall of our approach for iden-
tifying glaucoma progression on this dataset are 75% and
85.7% respectively.

True changes Detected changes Missed changes
7 6 1

True stables Detected stables Missed stables
14 12 2

Table 1. Change detection result of our approach on a dataset in-
cluding 7 changed cases with glaucoma progression and 14 stable
cases without changes.

To compare our approach with that in [4], we imple-
mented the approach of [4] and ran it on the same dataset.
As we mentioned above and also noted in [4], it is not pos-
sible to find a fixed threshold on distance in a 3D space up
to an unknown perspective transformation for change de-
tection; and therefore the approach in [4] cannot be fully
automatic. In addition, we found the approach [4] had diffi-
culty in achieving an acceptable 3D alignment between the
reconstructed 3D models from different time sessions for
most of the 21 image sequences in our dataset. By render-
ing the reconstructed 3D models with the approach in [4],
we can see significant errors in the 3D alignment for 13 im-
age sequences, and for only 8 of the 21 image sequences the
3D alignment appears reasonable. Figure 6 shows an exam-

ple of a poor 3D alignment generated with the approach.

(a)

Figure 6. A poor alignment between the 3D models reconstructed
from two time sessions with the approach of [4]. The red points
are from session 1, and the blue points are from session 2.

No clinically accepted methods exist for automatic
change detection of the optic disc in glaucoma. As a pi-
lot study, we view the 75% precision and 85.7% recall of
our approach as quite promising for a platform on which to
develop a much needed method to improve the diagnosis of
glaucoma progression. Future areas to explore include si-
multaneously acquired optic disc photos, improved camera
resolution, external projection of texture on the optic disc
through the camera system, fixing the camera focal position
and/or assessment of color variation across the optic disc.

7. Conclusion

We present an automatic approach for glaucoma diag-
nosis based on detecting 3D structure changes in the optic
disc area between two time sessions. For each time session,
only two uncalibrated fundus images are required. The ap-
proach is designed to deal with the low textureness of fun-
dus images, the near-planarity of the retinal surface, and
noisy feature matches due to image blur and large illumi-
nation variations. Particularly, a two-step algorithm is used
to match feature points that are either on vessel fragments
or are strong Harris corners. A RANSAC process based on
the 6-point algorithm is used to obtain a candidate list of
metric 3D reconstruction solutions for each time session.
The optimal 3D reconstruction is selected as the one that
achieves the optimal 3D alignment after an iterative bundle
adjustment. Structure changes are detected by examining
reprojection errors in 2D images.

The approach is evaluated on a dataset of 21 image se-
quences with manual gradings from glaucoma experts as
ground truth. The approach achieves 75% precision and
85.7% recall, which is significantly better than existing ap-
proaches. Our approach could serve as a platform for de-
veloping a clinically useful diagnostic method.
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