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Abstract

Shape from Shading (SFS) is one of the most extensively
studied problems in Computer Vision. However, most of
the approaches only deal with Lambertian or other specific
shading models, and are hence limited in their applicability
to real images. In this contribution we propose a general
unified framework in which it is possible to incorporate dif-
ferent illumination and shading models. We effectively deal
with the usual multiple local minima problem of the SFS
domain through some minimal user interactions. Features
such as pyramidal refinement, parallelizability of solution
evolution, global smoothness of solution give our frame-
work a definite edge over most other existing SFS schemes.
Results on real images demonstrate the efficacy of our ap-
proach.

1. Introduction
Shape from shading, or the recovery of 3D shape from the
shading information in an image, has been an area of active
interest in the computer vision community. Starting from
the initial works of Horn [5] to the recent works of Prados
et al. [9], there has been a whole gamut of techniques and
algorithms. The survey [16] contains a detailed study of
several techniques that have been suggested in the last three
decades up to 1999.

Although there is an abundance of methods and algo-
rithms, majority of them restrict themselves with strong as-
sumptions on surface reflectance properties or on the imag-
ing geometry. Most of the existing methods assume the sur-
face to be Lambertian and assume orthographic projection
as the imaging model. Such simplistic assumptions for the
surface reflectance model fail to explain satisfactorily the
shading in the images of real world surfaces. Effects such
as surface specularities are either by-passed by some pre-
processing of the image or require multiple images to be
handled effectively. Prados et al., in their recent works[9],
allow for perspective imaging models. However, the shad-
ing model assumes Lambertian surfaces which restrict the
domain of applicability of such techniques.

In this paper we present a general framework for shape
from shading which supports different shading and illumi-
nation models under various imaging constructions. Going
beyond the Lambertian assumption, the complete generality
of our shading and illumination model allows us to capture
specularities, shadows, etc.

For surface reconstruction we adopt a global minimiza-
tion approach, where we minimize a variational error met-
ric. A major objection to a global minimization approach is
that the recovered surface tends to disregard local features
in an attempt to impart a global smoothness. In contrast lo-
cal approaches [8, 7] aimed to capture local features closely
often require a priori height information. Moreover, the
results in such approaches are often fraught with consider-
able noise. In our scheme local features can be captured
in two ways. One can either adopt a pyramidal refinement
scheme where one first obtains a smoother general surface,
and then proceeds to work on the details. The other option
is to directly specify more control points in regions with
more detail, as described later on. Other existing methods
which follow propagation approaches [1] require specifica-
tion of height values from singular points of the surface etc.,
in the initialization phase. Our method needs no such spe-
cific height values which are usually difficult to obtain.

To minimize the error we employ a stochastic gradient
descent algorithm which utilizes the error as a reinforce-
ment to learn the solution. In our method the complete gen-
erality of the shading model makes such a stochastic algo-
rithm favorable over common gradient descent algorithms
as the gradient information, required in such algorithms, has
to be estimated non-analytically and would be highly noisy
and erroneous. The algorithm provably converges to a local
minimum. Our method fits an interpolating surface through
a sparse set of sample points in every iteration of the al-
gorithm. To ensure that the attained minimum is the one
corresponding to the correct shape user intervention is used
(if required and infrequent in practice) to modify the shape
and pull it out of an incorrect local minima. Another attrac-
tive feature of our method is the enormous parallelizability
of the optimization algorithm, which makes the algorithm
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Figure 1: The Camera Coordinate System

feasible for addressing real world situations.
The reuslts obtained, both for synthetic and real images,

under different illumination models clearly illustrate the ro-
bustness of our algorithm.

The remainder of the paper is organized as follows.
Section 2 poses the SFS problem in a variational setting
which naturally incorporates regularization in the error met-
ric. Section 3 discusses some of the illumination models
that can be handled in the generic framework of Section 2.
The basic notions of the stochastic reinforcement learning
scheme, utilized to minimize the error, is described in Sec-
tion 4. The algorithm is outlined in Section 5. The scheme
of hierarchical reconstruction for dealing with complex sur-
faces and other finer aspects is presented in Section 6. Sec-
tion 7 presents the results and Section 8 concludes the con-
tribution.

2. Problem Formulation
We represent the object to be modeled as a piecewise con-
tinuous function, f (x,y) [15] which represents the depth
map. The objective is to determine the value of the func-
tion f at some fixed (chosen by the user) locations (x,y)
such that a continuous smooth surface fitted through these
set of 3D points represents the actual surface as closely as
possible. We utilize the shading information from the given
image as a measure of the degree of match between the
actual and the reconstructed surfaces. The existence and
uniqueness of solution being an important aspect in the SFS
problem, we propose an interactive setting (with learning
automata as the underlying basis) where the user can pull
the system out of local minima and guide it to an acceptable
solution.

In what follows, we describe a variational formulation
(similar to the formulation for stereo in [2]) for the shape
from shading problem.

We will assume here that the camera performs a per-
spective projection of the 3D world on the retinal plane as
shown in Fig.1. The optical center, noted C in the figure,
is the center of projection and also the origin of our world
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Figure 2: In the image, a square window around the pro-
jected pixel m is considered

coordinate system. The z-axis is directed towards the object
and is perpendicular to the retinal plane. The image of the
3D point M is the pixel m on the retinal plane R . Such a
transformation can be described by a perspective projection
matrix P. Assuming that the focal length f of the camera is
known, P takes the simple form:

P = K
[

I3 0
]

where K is the camera internal matrix [4].
We denote the 3D surface by S which can be conve-

niently represented as (x,y, f (x,y)) in the coordinate system
of the camera focal plane, described above. Let M be a point
on this surface and N be the surface normal at M as depicted
in Fig.2. Let l denote the (known) light source location in
the coordinate system described above. The intensity value
in the image at pixel m is denoted by I(m) or I(u,v). Let
L(·) be the illumination kernel corresponding to the chosen
shading model (discussed in detail in the next section).

We now define our variational error metric. The surface
S represents a photometrically consistent solution [6] when
the following mean square error is minimized for each point
M = (x,y, f (x,y))T on the surface:

E(S,N,x,y) =

1
4pq

∫ p

−p

∫ q

−q
(I(m+m′)−L(S,N,L,x,y))2 dm′

(1)

where,
L = l− (x,y, f (x,y))T

is the local light source direction at the point M

N = ( fx, fy,−1)T

and, m ≡ P.(x,y, f (x,y))T

The total error can then be written as:



C(S,N) =
∫ ∫

E(S,N,x,y)dxdy (2)

The integration in (1) is carried over a small window
of size 4pq in the image assuming that the corresponding
(small) patch on the surface S has the same normal N and
the same local light source direction L. This approach au-
tomatically imposes a smoothness constraint on the surface
and regularizes the variational problem. The global smooth-
ness of the solution can be further enforced by a suitable
choice of the surface fit, as indicated in Section 5. The inte-
gral in (2) is carried over the entire surface S to obtain the
total cost metric.

The imaging model described in (1) is a general one and
can accommodate both perspective and orthographic pro-
jection models. Moreover, there is no restriction on the lo-
cation of the light source which can be finite or infinite, on-
axis or off-axis.

3. Illumination Models
The illumination kernel L(·) in the above formulation al-
lows for different illumination models in the shading com-
putation. Depending on the kind of image, the user may
judge for instance, whether the object is specular or the
Lambertian model is sufficient. A suitable model may then
be chosen and substituted for the kernel L(·). This general
framework extends the applicability of the SFS paradigm to
a larger set of real images.

Depending on their physical properties, surfaces can be
categorized as pure Lambertian, pure specular, hybrid, or
more sophisticated surfaces. Next, we describe the re-
flectance models and discuss their properties related to
shape from shading.

3.1 Lambertian and Specular Reflectance
Models

Lambertian surfaces are surfaces having only diffuse re-
flectance, i.e., surfaces which reflect light in all directions.
The brightness of a Lambertian surface is proportional to
the energy of the incident light. The amount of light energy
falling on a surface element is proportional to the area of
the surface element as seen from the light source position
(the foreshortened area). The foreshortened area is a cosine
function of the angle between the surface orientation and
the light source direction (see Fig.3(a)). Assuming that the
light source has a unit strength, the Lambertian surface can
be modeled as the product of the diffuse reflectance of the
surface Kd , and the foreshortened area cos θi as follows:

L(S,N,L,x,y) = Kd cos θi = Kd
N.L

| N || L |
(3)

L
N
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Figure 3: Reflectance Models

where θi is the angle between the surface normal N and
the local light source direction L.

Specularity only occurs when the incident angle of the
light source is equal to the reflected angle. It is formed by
two components: the specular spike and the specular lobe.
The specular spike is zero in all directions except for a very
narrow range around the direction of specular reflection.
The specular lobe spreads around the direction of specular
reflection. The model developed by Phong[3] represents the
specular component of reflection as powers of the cosine of
the angle between the perfect specular direction R and the
viewing direction V (see Fig.3(b)). This model is capable of
predicting specularities which extend beyond a single point;
however, the parameters have no physical meaning. In this
case the illumination kernel becomes

L(S,N,L,x,y) = Ks cosnθr = Ks

(

R.V
| R || V |

)n

(4)

where,

R = 2(L.N)N−L

and, V = (−x,−y,− f (x,y))T

Ks represents the specular reflectance of the surface. The
specular exponent is denoted by n and measures the spread
of the specular lobe around R.

Most surfaces in the real world are neither purely Lam-
bertian nor purely specular, they are a combination of both.
That is, they are hybrid surfaces and can be represented by:

L(S,N,L,x,y) = Kd
N.L

| N || L |
+Ks

(

R.V
| R || V |

)n

(5)



3.2 Handling Shadows

The proposed algorithm allows effective handling of shad-
ows by borrowing the scheme from a basic Raytracer[3]
kernel. Consider a 3D surface S and a point M = (x,y,z)
on it. This point is considered to be shadowed if the ray
joining the point to the light source (assumed point source)
is obstructed by another primitive. In our algorithm, we test
every point on the surface for shadows. In case the point
is under shadow, then the value of the illumination kernel
L(·) at that point is assumed to be zero (and must match the
intensity in the image if the point is really under shadow).
Otherwise, the value is computed in the usual manner.

Next, we give details of the important aspects of the
learning automata framework.

4. Continuous Action Learning
Automata (CALA)

Learning automata are adaptive decision making units that
learn to choose an optimal action from a set actions by in-
teracting with a random environment. A continuous action
learning automaton is an automaton with a continuous space
of actions, i.e. the set of actions of a CALA is the real line
R . Networks of CALA has been effectively used for op-
timization of multivariable objective functions. In the op-
timization of multivariable functions the network of CALA
can be identified to be in a game setting where each CALA
tries to maximize its profit. Details of Continuous Action
Learning Automaton schemes can be found in [10],[12].
For completeness we present a brief overview.

To describe the operations of a network of CALA, we
consider a situation where we want to maximize a func-
tion f : R N → R , where we call the arguments of f as pa-
rameters. To achieve this objective we consider a stochas-
tic game of N Continuous Action Learning Automata [12],
[11] corresponding to the N parameters of the function f .
Thus each parameter of the optimal set for the function f
is to be decided from the action sets of the N CALA in the
network. Each round of the game, corresponding to each
iteration of the algorithm, consists of each of the players
choosing a specific action from their respective action sets.
The CALA then receive payoffs for their selected actions
from the environment. The payoff is the function value
evaluated at the specific values of the actions selected by
the N CALA. In game playing terminology such a situation
is called a common payoff game.

Each CALA C j in the network is associated with a nor-
mal action probability distribution N(µ j(k),σ j(k)), where
k is the time-step corresponding to the kth iteration. This
probability distribution, usually referred to as the action
probability distribution, dictates the action chosen by the
CALA at time-step k. The CALA updates the mean µ(k)

and standard deviation σ(k) based on the feedback it re-
ceives from the environment.

Let 〈x(k)〉 denote the tuple of actions chosen by the N
CALA at time-step k. In response to the tuple of actions
chosen, the environment provides the stochastic reinforce-
ment β to each of the CALA. We assume that β takes values
in [0,1]. Let

F(x) = E[β| jth CALA chooses x j ∈ R ] (6)

An action tuple 〈x∗〉 is said to be optimal if

F(x∗) ≥ F(x) ∀x ∈ BN(x∗,ε) (7)

Here BN(x∗,ε) is an ε-ball in R N centered at x∗. Thus if
any one of the players chooses a different strategy while the
others keep their strategy unchanged the payoff decreases
and the optimal action set is a Nash equilibrium. In other
words x∗ is a local maximum of F(x).

The algorithm for a network of CALA in a game
playing situation proceeds as follows. At the kth

time-step, the environment is presented with the ac-
tion tuples 〈x1(k),x2(k),x3(k), . . . ,x j(k), . . . ,xN(k)〉 and
〈µ1(k),µ2(k),µ3(k), . . . ,µ j(k), . . . ,µN(k)〉. The environment
computes the responses β〈x(k)〉 and β〈µ(k)〉 for the two tu-
ples respectively. Then all the automata update their action
probability distributions in the following fashion

µ j(k +1) = µ j(k)

+ λF1(µ j(k),σ j(k),x j(k),β〈x(k)〉,β〈µ(k))〉

(8)

σ j(k +1) = σ j(k)

+ λF2(µ j(k),σ j(k),x j(k),β〈x(k)〉,β〈µ(k))〉

− λK[σ j(k)−σL] (9)

Here λ is the learning rate parameter controlling the step
size (0 < λ < 1). K is a large positive number controlling
the shrinking of σ and σL gives a lower bound for σ. The
algorithm is said to have converged when the µ j(k)s stop
changing appreciably and σ j(k)s are close to σL. The func-
tions F1 and F2 are defined as follows.

F1(µ,σ,x,β〈x〉,β〈µ〉) =

(β〈x〉−β〈µ〉

φ(σ)

)(

x−µ
φ(σ)

)

(10)

F1(µ,σ,x,β〈x〉,β〈µ〉) =

(β〈x〉−β〈µ〉

φ(σ)

)

[

(

x−µ
φ(σ)

)2

−1

]

(11)
Here φ(σ) is



φ(σ) = σL for σ ≤ σL

= σ for σ > σL > 0 (12)

The rationale behind the updation schemes presented
above is the following. If x(k) receives a better response
compared to µ(k), then µ(k) is shifted towards x(k) oth-
erwise it is moved away. The standard deviation σ(k)
is shrunk normally, apart from situations when an action
choice x(k) far away from µ(k) receives a better response
or when a x(k) very close to µ(k) receives a worse response.

In [12], [11], one can find a detailed study of the asymp-
totic behavior of the algorithm. For games with com-
mon payoff, the algorithm converges to one of the maxi-
mal points of the function f , if certain assumptions, essen-
tially regarding the smoothness of the response function,
hold true. One can argue that the response function in our
scheme as described in (14) satisfies these assumptions.

We note that the extremely useful feature of the above
algorithm is that it does not require any gradient informa-
tion. The algorithm stochastically seeks the optimum and
follows the gradient in an expected sense and converges to
the optimal points. However, such an algorithm might turn
out to be slow in practice. This shortcoming is suitably an-
swered in [13] where the authors show that the algorithm
has immense potential for parallelizability. In fact utilizing
n computing resources, one can obtain n-fold speed-up.

5. The Basic Surface Reconstruction
Algorithm

In the image space, a set of points BI , on the boundary
(visible silhouette) of the object is specified. Subsequently,
some locations inside this boundary CI (whose purpose will
become clear in the ensuing discussion) are also indicated.
The region inside the boundary is specified as a mask and
is used to determine the pixels in the image which will be
used in the shading computation. As an example, in Fig.6,
the points in BI are shown as empty circles while the points
in CI are shown as filled circles. The white region in Fig.6 is
the primary region of interest (mask) where the depth com-
putation is performed. The object is assumed to be at some
average depth Zavg from the camera. Let, BW and CW de-
note sets of world points (on the plane z = Zavg) correspond-
ing to those in the sets BI and CI respectively, obtained from
a knowledge of the camera. All the points are thus associ-
ated with this depth i.e. f (x,y) = Zavg, ∀(x,y) ∈ BW ∪CW .
While the boundary points are kept fixed, the depths of the
interior points keep changing as the algorithm proceeds. In
Fig.4 we see a snap-shot of a surface at a certain time step
of the algorithm where the positions of the points in CW are
indicated by black dots.

Now, the objective of the algorithm is to determine the
values f (x,y) for all points (x,y) ∈ CW such that the piece-
wise continuous function fitted through these 3D points rep-
resents the photometrically consistent shape of the object.
As introduced in section 4, this problem can be formulated
as a stochastic game between CALA. We associate a CALA
Ci with each of the locations (xi,yi) in CW . The action vari-
able for each CALA Ci is the depth f (xi,yi) of the surface
at the point (xi,yi). We propose a game with common pay-
off with the variational error metric introduced in section 2
acting as the common reinforcement.

At any stage of the algorithm, the reinforcement βz pro-
vided to the CALA for the chosen action set 〈zi〉 is com-
puted as follows (it is to be noted that the reinforcement βµ

for the mean set 〈µi〉 is also computed in an identical fash-
ion and henceforth we refer to the reinforcement simply as
β unless specified otherwise). First, a (continuous) smooth
surface S is fitted through the points {(xi,yi,zi) : (xi,yi) ∈
CW}∪{(x,y,Zavg) : (x,y) ∈ BW} by minimizing a thin plate
functional similar to that used in [15]. Note that the choice
of a thin-plate surface imparts a global smoothness to the
solution. Now, for evaluation of the variational error met-
ric, we discretize the integrals in (2) to obtain:

C(S,N) = ∑
xg

∑
yg

E(S,N(xg,yg,zg),xg,yg) (13)

The region within the boundary, BW is sampled finely on
a discrete grid G , where for each grid location (xg,yg) ∈ G ,
the depth zg and the surface normal N(xg,yg,zg) are com-
puted from the fitted surface. The integral in (1) is dis-
cretized in a similar fashion by considering a window of
size 4pq around the projected pixel m and averaging out the
mean square error. Note that handling the variational prob-
lem in a quantitative domain allows us to effectively handle
the finite light source scenario without getting into complex
analytical expressions. The reinforcement β thus turns out
to be:

β = 1.0−
C(S,N)

| G |
(14)

The algorithm is run until the convergence conditions
listed in section 4 are met. This concludes the description
of the basic algorithm.

6. Finer Aspects
In this section, we present some enhancements to our ba-
sic algorithm that allow for better control over the recon-
structed surface and help in speeding up the algorithm.

6.1. User Interaction
After the initial user interaction/input, the algorithm pro-
ceeds to converge to a local minimum as noted in Section



4. At this stage, the user requirements govern whether the
result obtained is acceptable as is or a better result is ex-
pected. Fig.4 illustrates this idea at an intermediate stage of
reconstruction of the surface of a vase, where the algorithm
showed no significant change in the payoff value β, indicat-
ing a local minimum. A slight undesirable trough is visible
on the surface at the location marked C in Fig.4(a). The
system allows the user to intervene to pull the system out
of this local minimum. The arrow depicts the direction and
magnitude of change in the depth value at the said location
initiated by the user to pull the system out of the local min-
imum. Fig.4(b) depicts the surface after the algorithm has
adjusted to the interaction. The user can also add to the set
of points CI (in case the details in a particular region need
to be enhanced) or delete from the existing set (to impart
smoothness to a local region around the deleted location).
For the newly added points, the µ values are assigned by
interpolating from the current surface S while the σ values
are specified by the user.

�
�
�
�

C

(a) (b)

Figure 4: Illustration of User Interaction: (a) Before Inter-
action and (b) surface after pulling on CALA C. Black dots
indicate locations in CW .

Note that a change δ in the mean value µi of a CALA Ci

s.t. δ ∈ (µi −σi,µi + σi) describes a change in the playing
strategy chosen by player i (CALA Ci). From the defini-
tion of Nash Equilibrium in (7), it is clear that the system
cannot be pulled out of a local minimum, if player i is the
only CALA whose µ is updated by the user at the minimum.
Thus, the change initiated by the user must be large enough
(outside the probability hill) to ensure that the chosen strat-
egy does not belong to the current strategy set of Ci. The
system would then be able to overcome the minimum.

6.2. Hierarchical Reconstruction
We propose a scheme of hierarchical reconstruction for
complex surfaces which cannot be suitably represented as
an interpolating thin plate functional through a set of 3D
points. One such example is a face, where features like
nose, lips etc., preclude dealing with the whole face as a
single thin plate functional. We illustrate the procedure on
the classical Mozart face in Fig.5. Instead of dealing with

(a) (b)
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5
4

(c) (d)

Figure 5: Hierarchical Reconstruction of Mozart’s face:
(a)&(b) Original image and surface, (c) levels and (d) the
reconstructed surface.

the whole face as one instance, the user segments out each
sub-region of the face and specifies the sets BI and CI and
the mask, separately for each of the regions as shown in
Fig.5(c) where the number of sub-regions is 6. The algo-
rithm is then run sequentially on each sub-region, by in-
cluding only the image pixels within the mask of that sub-
region, for the payoff computation. The reconstructed sur-
face for each sub-region acts as a seed for initializing the µ
values of the boundary points of the next (adjoining) sub-
region under consideration. In this manner, the method al-
lows dealing with complex surfaces while maintaining C0

continuity along creases. In the first stage, reconstruction of
sub-region 1 shown in Fig.5(c) is carried out first. The ad-
joining sub-region (nose) 3 is considered next. The bound-
ary height values for sub-region 3 are initialized from the
surface obtained for sub-region 1 and the reconstruction
algorithm run for this sub-region. The other subregions
are considered subsequently and finally, Fig.5(d) shows the
complete reconstructed surface.

6.3. Placement of CALA
As one can expect, the convergence rate of the CALA algo-
rithm is directly governed by the number of locations in CI .
It is therefore expected that these locations be marked out in
a topology aware manner, as far as possible. Consider the
lateral view of a surface of revolution as an example. After
the boundary of the SOR is marked out and held fixed, pop-
ulating CI with more number of points on the axis of rev-
olution and fewer around the axis serves the same purpose



(a) (b) (c)

(d)

Figure 6: Vase: (a) Original image, (b) original surface, (c)
points in the sets BI (white circles) and CI (black circles)
and (d) the reconstructed surface.

as having a uniform density of points all around, though
the former takes much less time to converge. Also, since
the surface has a degree of freedom at the marked locations
only, more locations need to be marked in regions where
finer detail is required.

6.4. Parallelizability
As noted in Section 4, the CALA algorithm scales linearly
with the size of the available resources. This makes it a
particularly favorable choice among other similar (slow)
schemes which are not generally scalable. As indicated in
Section 4, the learning rate is controlled by the parameter
λ, see equation(8). Setting a high value for λ for a single
threaded run of the algorithm might lead to faster conver-
gence but the results will be poor. On the availability of
more computing resources higher values of λ give equally
good results and in this sense speed-up is achieved. For de-
tails on parallelizing CALA, the reader is referred to [13].

7. Results
The scheme proposed has been extensively tested for a num-
ber of cases. Fig.6 depicts the result for the reconstruction
of a synthetic Lambertian Vase for which the illumination
kernel in (3) was appropriate.

Then the algorithm was tested for a synthetic Cone
(Fig.7) satisfying the hybrid reflectance model. If the Lam-
bertian kernel (3) is used, the algorithm converges to the

(a) (b) (c)

Figure 7: Synthetic Cone (l = (0,0,0), Ks = 0.5, Kd = 0.5,
n = 20): (a) Original image, (b) reconstructed surface - Dif-
fuse only, (c) reconstructed surface - both Diffuse and Spec-
ular.

(a) (b) (c)

Figure 8: Real Vase (l = (0,0,0), f = 6.8mm): (a) Original
image, (b) reconstructed surface - Diffuse only, (c) recon-
structed surface - both Diffuse and Specular.

(a) (b)

Figure 9: Presence of Shadow (l = (0,−0.5,−1.0), f =
1.0): (a) Original image, (b) reconstructed surface

reconstruction in Fig.7(b) which shows significant errors in
regions of highlight. However, when the more appropriate
hybrid kernel (5) is used, the results (see Fig.7(c)) improve
significantly.

The algorithm works well for images with black shadows
as is shown in Fig.9.

For testing the algorithm in real situations, a painted-
clay Vase (shown in Fig.8(a)) was pictured under illumi-
nation from an incandescent lamp (10W) placed near the



(a) (b)

Figure 10: Pepper Image (l = (0.766,−0.642,−1.0)): (a)
Original image, (b) reconstructed surface

camera center. An Olympus C4100Z camera was used for
the imaging purposes. As in the synthetic case, the use of
Lambertian model fails to give good results (see Fig.8(b)).
The presence of a specular highlight necessitates the use of
the hybrid kernel in (5).The reconstruction (for the region
within the white rectangle) under this model is shown in
Fig.8(c)1.

Another real image tried was the pepper image from the
UCF2 repository. The light source location for this image
is known but the camera unknown. Hence a set of plausi-
ble camera parameters were used to reconstruct the surface
(for the region within the dotted white boundary) shown in
Fig.10.

It is to be noted that in all these examples no user inter-
vention was necessary (during the solution evolution pro-
cess) to arrive at the solution.

In all these cases the fixed points on the boundary were
identified from the silhouette in the image and were associ-
ated with the same average depth. This is an approximation
in the context of perspective imaging as the points on the
silhouette should be associated with the occluding contour
[14]. Although this approximation does affect the quality of
results, the solutions obtained are acceptable.

8. Conclusion
In this contribution, we have proposed a novel generic
scheme for the shape from shading problem. Our approach
can effectively handle different illumination and imaging
models. This flexibility allows one to handle real images
more effectively. Being essentially a non-analytical frame-
work, the method handles light sources placed at finite dis-
tances from the object as well as placed at infinity. Fea-
tures such as progressive reconstruction and pyramidal re-
finement make the task of modeling easier. Convergence

1To see an animation of the solution evolution process please visit
http://vglab.cse.iitd.ernet.in/research/research group1/2/sfs/index.shtml

2University of Central Florida: by anonymous ftp under the
pub/tech paper/survey directory at eustis.cs.ucf.edu

issues such as those of local minima can also be suitably
dealt with by minimal user intervention in the solution evo-
lution process.

A definite direction for extension of this contribution is
the learning of the light source location. Moreover, the sur-
face illumination parameters such as the albedo etc. could
also be learned along with the shape.
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