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Abstract

Modeling a free-form 3D-surface from a single view has

been a widely pursued problem. The existing schemes are

either fully-automatic shape-from-X techniques or involve

adept interaction from the user but little or no geometric

(photometric) basis. We propose a novel scheme of inter-

active modeling of free-form lambertian surfaces where the

solution obtained is consistent with the Shape from Shad-

ing model. To this end, a reinforcement learning based

scheme has been adopted which allows user intervention

at any stage of the algorithm to guide the SFS solution to a

global minimum.

1. Introduction

Recovering 3D shape and geometry information from

a single image has been an area of active interest in the

area of computer vision. Depending on the type of visual

cues utilized there is a whole gamut of techniques which

address this challenging issue. Techniques which address

structured scenarios utilize various geometric invariants [2].

Methods applicable for free-form shapes utilize shading [5],

texture [1], contour information [13], etc. as cues. User

interaction/intervention in varying degrees is a necessity

in a vast majority of such single-view techniques. Meth-

ods dealing with structured scenes require fair amount of

user interaction in the identification of the geometric invari-

ants. Techniques addressing free-form surface reconstruc-

tion typically involve the user in the specification of seed

solutions, boundary conditions and in the identification of

discontinuities, folds, creases [14] etc.

In this paper we present a semi-automatic scheme for

single-view modeling of free-form lambertian surfaces. The

technique in this contribution builds upon the purely inter-

active surface modeling scheme of Zhang et al. [14] by uti-

lizing shading information to considerably reduce the user

interaction in situations where the scene is known to satisfy

certain shading constraints. In Pictorial Relief [7] Koen-

derink investigates the depth perception abilities in human

visual system, and this forms the motivation for the work

in [14]. However, apart from the visual appearance, little

or nothing can be said about the reconstructed surface in

terms of consistency with geometric (photometric) proper-

ties when using such a purely interactive scheme. If such

a scheme is boot-strapped with constraints from the scene

then the task of modeling becomes considerably easier, and

this has been the motivation behind this contribution. We

utilize shape from shading (SFS) constraints to decide the

depths at user-specified control points which ultimately de-

cide the shape of the piece-wise continuous patches. The

survey [15] contains detailed study of several approaches

to solve the SFS problem. A basic objection to a SFS for-

mulation might be the issue of non-uniqueness and the fact

that majority of the algorithms dealing with SFS can at most

reach a local minimum as a solution. Also most of these al-

gorithms do not allow much scope for the user to steer it

to an acceptable solution. To address these issues we have

proposed a novel reinforcement learning based scheme for

solving the SFS problem which facilitates user intervention

at any stage to guide the algorithm to a desired result. A

useful feature of our scheme is the incremental nature of

the modeling phase. Already reconstructed patches are uti-

lized to provide boundary conditions to patches under con-

struction. In this aspect the scheme is different from that

in [14] where the minimization of the energy functional has

to be done over all the constraints every time a new con-

straint is added to the set of existing ones. While majority

of the SFS techniques deal with light sources at infinity, our

formulation efficiently incorporates light sources placed at

finite distances from the object. Moreover our SFS scheme,

like the recent works of Prados et al. [8], also allows a more

naturally occurring perspective camera as the imaging de-

vice in contrast to the majority of SFS techniques which

limit themselves to the orthographic case.

The remainder of the paper is organized as follows. Sec-

tion 2 poses the SFS problem in a variational setting which
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Figure 1. The Camera Coordinate System

naturally incorporates regularization in the error metric. To

minimize the error we have utilized a stochastic reinforce-

ment learning algorithm and its basic notion is presented in

section 3. The algorithm is outlined in section 4. Section

5 illustrates the user interaction scheme with an example.

The scheme of hierarchical reconstruction for dealing with

complex surfaces is presented in section 6. Section 7 deals

with the finer aspects of the technique, section 8 presents

the results and section 9 concludes the contribution.

2. Problem Formulation

We represent the object to be modeled as a piecewise

continuous function, f (x,y) [14] which represents the depth

map. The objective is to determine the value of the function

f at some fixed (chosen by the user) locations (x,y) such

that a continuous smooth surface fitted through these set of

3D points represents the actual surface as closely as pos-

sible. We propose to use the Shape from Shading (SFS)

framework by utilizing the shading information from the

given image, as a measure of the degree of match between

the actual and the reconstructed surfaces. The existence and

uniqueness of solution being an important aspect in the SFS

problem, we propose an interactive setting (with learning

automata as the underlying basis) where the user can pull

the system out of local minima and guide it to an acceptable

solution.

In what follows, we describe a variational formulation

(similar to the formulation for stereo in [3]) for the shape

from shading problem that incorporates perspective projec-

tion and single point light source - finite or infinite.

We will assume here that the camera performs a per-

spective projection of the 3D world on the retinal plane as

shown in Fig.1. The optical center, noted C in the figure,

is the center of projection and also the origin of our world

coordinate system. The z-axis is directed towards the object

and is perpendicular to the retinal plane. The image of the

m

M

S

N

C

y

x

Figure 2. In the image, a square window
around the projected pixel m is considered

3D point M is the pixel m on the retinal plane R . Such a

transformation can be described by a perspective projection

matrix P. Assuming that the focal length f of the camera is

known, P takes the simple form:

P = K
[

I3 0
]

where K is the camera internal matrix [4].

We denote the 3D surface by S which can be conve-

niently represented as (x,y, f (x,y)) in the coordinate sys-

tem of the camera focal plane, described above. Let M be

a point on this surface and N be the surface normal at M as

depicted in Fig.2. Let ρ denote the (known) surface albedo

and l denote the (again known) light source location in the

coordinate system described above. The intensity value in

the image at pixel m is denoted by I(m) or I(u,v).
We now define our variational error metric. The surface

S represents a photometrically consistent solution for the

lambertian shading equation [6] when the following mean

square error is minimized for each point M = (x,y, f (x,y))T

on the surface:

E(S,N,x,y) =
1

4pq

Z p

−p

Z q

−q
(I(m+m′)−ρ

L.N
| L || N |

)2 dm′

(1)

where,

L = l− (x,y, f (x,y))T

is the local light source direction at the point M

N = ( fx, fy,−1)T

and, m ≡ P.(x,y, f (x,y))T

The total error can then be written as:

C(S,N) =
Z Z

E(S,N,x,y)dxdy (2)
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In (1), the integration is carried over a small window

of size 4pq in the image assuming that the corresponding

(small) patch on the surface S has the same normal N and

the same local light source direction L. This approach au-

tomatically imposes a smoothness constraint on the surface

and regularizes the variational problem. The integral in (2)

is carried over the entire surface S to obtain the total cost

metric.

Next, we detail the important aspects of the learning au-

tomata framework.

3. Continuous Action Learning Automaton
(CALA)

Learning automata are adaptive decision making units

that learn to choose an optimal action from a set actions

by interacting with a random environment. A continuous

action learning automaton is an automaton with a continu-

ous space of actions, i,e, the set of actions of a CALA is

the real line R . Details of Continuous Action Learning

Automaton schemes can be found in [9],[11]. For com-

pleteness we present a brief overview. Associated with a

CALA is a normal probability distribution N(µ(k),σ(k))
which dictates the action chosen by the CALA at any instant

of time k. This distribution is usually referred to as the ac-

tion probability distribution. The CALA updates the mean

µ(k) and standard deviation σ(k) based on the feedback it

receives from the environment. For an action x taken by the

CALA, the reinforcement βx provided by the environment

is a random variable with an associated probability distribu-

tion. The expected feedback or the expected reinforcement

received from the environment for the chosen action x is

denoted as dx, where

dx = E[βx|x] (3)

The objective of the CALA is to learn the value of x for

which dx is maximum.

To describe the operations of a CALA, we consider the

following situation where the task is to maximize a func-

tion f : R → R . Given a value of x the function value

f (x) is given to the CALA as the feedback for its ac-

tion. Thus E[βx|x] = f (x). The optimal action x0 is the

one which maximizes f (x). To arrive at this value x0 the

CALA starts with an initial action probability distribution

N(µ(0),σ(0)) and, through a learning algorithm, updates

its action probability distribution after each interaction with

the environment. The CALA operates in the following

fashion. At every time-step k, it selects a real number

x(k) at random guided by its current probability distribution

N(µ(k),φ(σ(k))), where the function φ(σ(k)) is defined in

equation (6). The CALA then obtains reinforcement from

the environment for two actions, µ(k) and x(k). Let these

responses be denoted by βµ(k) and βx(k) respectively. Based

on these responses the CALA modifies its action probability

distribution N(µ(k),σ(k)) according to the following equa-

tions (4) and (5).

µ(k +1) = µ(k)+λ

(
βx(k) −βµ(k)

)
φ(σ(k))

(
x(k)−µ(k)

)
φ(σ(k))

(4)

σ(k +1) = σ(k)

+ λ

(
βx(k) −βµ(k)

)
φ(σ(k))

[(
x(k)−µ(k)

φ(σ(k))

)2

−1

]

− λK(σ(k)−σL) (5)

where,

φ(σ) = σL for σ ≤ σL

= σ for σ > σL > 0 (6)

and λ is the learning parameter controlling the step size

(0 < λ < 1). K is a large positive number controlling the

shrinking of σ and σL gives a lower bound for σ. The algo-

rithm is said to have converged when µ(k) stops changing

appreciably and σ(k) is close to σL. The rationale behind

the updation schemes presented above is the following. If

x(k) receives a better response compared to µ(k), then µ(k)
is shifted towards x(k) otherwise it is moved away. The

standard deviation σ(k) is shrunk normally, apart from sit-

uations when an action choice x(k) far away from µ(k) re-

ceives a better response or when a x(k) very close to µ(k)
receives a worse response.

The asymptotic behavior of the CALA algorithm has

been explored in [11], where the general algorithm pre-

sented above has been shown to be equivalent to a stochastic

difference equation. With some assumptions which essen-

tially specify the smoothness of the function f (x) the al-

gorithm, in the asymptotic sense, has a stochastic gradient

following property. If σ and λ are sufficiently small, it can

be shown that the algorithm converges to a close approxi-

mation of an isolated local maximum of f (x).

3.1. Games of Continuous Action Learning Au-
tomata

Let us consider a situation where we want to maximize a

function f : R N → R , where we call the arguments of f as

parameters. To achieve this objective we consider a stochas-

tic game of N Continuous Action Learning Automata [11],

[10] corresponding to the N parameters of the function f .

Each round of the game consists of each of the players

choosing a specific action from their respective action sets.

The CALA then receive payoffs for their selected actions
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from the environment. The payoffs are the function values

evaluated at the specific values of the actions selected by the

N CALAs. In game playing terminology such a situation is

called a common payoff game.

Let 〈x(k)〉 denote the tuple of actions chosen by the N

CALA at time-step k. In response to the tuple of actions

chosen, the environment provides the stochastic reinforce-

ment β to each of the CALA. We assume that β takes values

in [0,1]. Let

F(x) = E[β| jth CALA chooses x j ∈ R ] (7)

An action tuple 〈x∗〉 is said to be optimal if

F(x∗) ≥ F(x) ∀x ∈ B N(x∗,ε) (8)

Here B N(x∗,ε) is an ε-ball in R N centered at x∗. Thus if

any one of the players chooses a different strategy while the

others keep their strategy unchanged the payoff decreases

and the optimal action set is a Nash equilibrium. In other

words x∗ is a local maximum of F(x).
The algorithm for a network of CALA in a game

playing situation is similar to the one described above

for a single CALA. Each CALA C j in the network is

associated with a normal action probability distribution

N(µ j(k),σ j(k)), where k is the time-step index as before.

At the kth time-step, the environment is presented with the

action tuples 〈x1(k),x2(k),x3(k), . . . ,x j(k), . . . ,xN(k)〉 and

〈µ1(k),µ2(k),µ3(k), . . . ,µ j(k), . . . ,µN(k)〉. The environment

computes the responses β〈x(k)〉 and β〈µ(k)〉 for the two tu-

ples respectively. Then all the automata update their action

probability distributions in the following fashion

µ j(k +1) = µ j(k)

+ λF1(µ j(k),σ j(k),x j(k),β〈x(k)〉,β〈µ(k))〉

(9)

σ j(k +1) = σ j(k)

+ λF2(µ j(k),σ j(k),x j(k),β〈x(k)〉,β〈µ(k))〉

− λK[σ j(k)−σL] (10)

where the functions F 1 and F2 are defined as follows.

F1(µ,σ,x,β〈x〉,β〈µ〉) =

(β〈x〉−β〈µ〉

φ(σ)

)(
x−µ

φ(σ)

)
(11)

F1(µ,σ,x,β〈x〉,β〈µ〉) =

(β〈x〉−β〈µ〉

φ(σ)

)[(
x−µ

φ(σ)

)2

−1

]
(12)

Here φ(σ) is the same function defined in equation (6)

and K and λ carry the same implications as before.

In [11], [10], one can find a detailed study of the asymp-

totic behavior of the algorithm. For games with com-

mon payoff, the algorithm converges to one of the maxi-

mal points of the function f , if certain assumptions, essen-

tially regarding the smoothness of the response function,

hold true. One can argue that the response function in our

scheme as described in (14) satisfies these assumptions.

We note that the extremely useful feature of the above

algorithm is that it does not require any gradient informa-

tion. The algorithm stochastically seeks the optimum and

follows the gradient in an expected sense and converges to

the optimal points. However, such an algorithm might turn

out to be slow in practice. This shortcoming is suitably an-

swered in [12] where the authors show that the algorithm

has immense potential for parallelizability. In fact utilizing

n computing resources, one can obtain n-fold speed-up.

4. The Basic Surface Reconstruction Algo-
rithm

In the image space, a set of points B I , on the boundary

(visible silhouette) of the object is specified. Subsequently,

some locations inside this boundary C I (whose purpose will

become clear in the ensuing discussion) are also indicated.

The region inside the boundary is specified as a mask and

is used to determine the pixels in the image which will be

used in the shading computation. As an example, in Fig.6,

the points in B I are shown as empty circles while the points

in C I are shown as filled circles. The white region in Fig.6 is

the primary region of interest (mask) where the depth com-

putation is performed. The object is assumed to be at some

average depth Zavg from the camera. Let, BW and CW de-

note sets of world points (on the plane z = Zavg) correspond-

ing to those in the sets B I and C I respectively, obtained from

a knowledge of the camera. All the points are thus associ-

ated with this depth i.e. f (x,y) = Zavg, ∀(x,y) ∈ BW ∪ CW .

While the boundary points are kept fixed, the depths of the

interior points keep changing as the algorithm proceeds. In

Fig.3 we see a snap-shot of a surface at a certain time step

of the algorithm where the positions of the points in CW are

indicated by black dots.

Now, the objective of the algorithm is to determine the

values f (x,y) for all points (x,y) ∈ CW such that the piece-

wise continuous function fitted through these 3D points rep-

resents the photometrically consistent shape of the object.

As introduced in section 3, this problem can be formulated

as a stochastic game between CALA. We associate a CALA

C i with each of the locations (xi,yi) in CW . The action vari-

able for each CALA C i is the depth f (xi,yi) of the surface

at the point (xi,yi). We propose a game with common pay-

off with the variational error metric introduced in section 2

acting as the common reinforcement.

At any stage of the algorithm, the reinforcement βz pro-
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vided to the CALA for the chosen action set 〈zi〉 is com-

puted as follows (it is to be noted that the reinforcement βµ
for the mean set 〈µi〉 is also computed in an identical fash-

ion and henceforth we refer to the reinforcement simply as

β unless specified otherwise). First, a (continuous) smooth

surface S is fitted through the points {(xi,yi,zi) : (xi,yi) ∈
CW}∪{(x,y,Zavg) : (x,y)∈ BW} by minimizing a thin plate

functional similar to that used in [14]. Now, for evaluation

of the variational error metric, we discretize the integrals in

(2) to obtain:

C(S,N) = ∑
xg

∑
yg

E(S,N(xg,yg,zg),xg,yg) (13)

The region within the boundary, BW is sampled finely on

a discrete grid G , where for each grid location (xg,yg) ∈ G ,

the depth zg and the surface normal N(xg,yg,zg) are com-

puted from the fitted surface. The integral in (1) is dis-

cretized in a similar fashion by considering a window of

size 4pq around the projected pixel m and averaging out the

mean square error. Note that handling the variational prob-

lem in a quantitative domain allows us to effectively handle

the finite light source scenario without getting into complex

analytical expressions. The reinforcement β thus turns out

to be:

β = 1.0−
C(S,N)

| G |
(14)

The algorithm is run until the convergence conditions

listed in section 3 are met. This concludes the description

of the basic algorithm. In the next section, we describe an

interactive setting that allows us to deal with the SFS local

minima in an effective manner.

5. User Interaction

After the initial user interaction/input, the algorithm pro-

ceeds to converge to a local minimum as noted in section 3.

At this stage, the user requirements govern whether the re-

sult obtained is acceptable as is or a better result is expected.

In the latter case, the user can interact with the resultant 3D

mesh S to pull the system out of the local minimum and let

the algorithm converge to another local minimum or possi-

bly a global minimum. The interaction scheme basically al-

lows the user to adjust the depth values at each of the points

{(x,y,z) ∈ S : (x,y) ∈ CW} following which the µ values for

the altered CALA are shifted to the new z values (keeping

their σ unaltered) and the algorithm is resumed. The user

can also add to the set of points C I (in case the details in

a particular region need to be enhanced) or delete from the

existing set (to impart smoothness to a local region around

the deleted location). For the newly added points, the µ val-

ues are assigned by interpolating from the current surface S
while the σ values are specified by the user.

�
�
�
�

�
�
�
�

C

(a) (b)

Figure 3. Illustration of User Interaction:
(a) Before Interaction and (b) surface after
pulling on CALA C. Black dots indicate lo-
cations in CW .

Fig.3 illustrates this idea at an intermediate stage of re-

construction of the surface of a vase, where the algorithm

showed no significant change in the payoff value β, indi-

cating a local minimum. A slight trough is visible on the

surface at the location marked C in Fig.3(a), indicating a

deviation from the expected result. The arrow depicts the

direction and magnitude of change in the depth value at the

said location initiated by the user to pull the system out of

the local minimum. Fig.3(b) depicts the surface after the

algorithm has adjusted to the interaction. Note that this set-

ting is the key to the claimed incremental framework. The

algorithm can take in additional constraints and use them in

conjunction with the learned history, without the need for a

restart.

Note that a change δ in the mean value µi of a CALA Ci
s.t. δ ∈ (µi −σi,µi + σi) describes a change in the playing

strategy chosen by player i (CALA Ci). From the defini-

tion of Nash Equilibrium in (8), it is clear that the system

cannot be pulled out of a local minimum, if player i is the

only CALA whose µ is updated by the user at the minimum.

Thus, the change initiated by the user must be large enough

(outside the probability hill) to ensure that the chosen strat-

egy does not belong to the current strategy set of Ci. The

system would then be able to overcome the minimum.

6. Hierarchical Reconstruction

We propose a scheme of hierarchical reconstruction for

complex surfaces which cannot be suitably represented as

an interpolating thin plate functional through a set of 3D

points. One such example is a face, where features like

nose, lips etc., preclude dealing with the whole face as a

single thin plate functional. We illustrate the procedure on

the classical Mozart face in Fig.4. Instead of dealing with
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Figure 4. Hierarchical Reconstruction of
Mozart’s face: (a)&(b) Original image and
surface, (c)&(d) level-1 reconstruction, (e)&(f)
level-2 reconstruction and (g)&(h) final recon-
struction.

the whole face as one instance, the user segments out each

sub-region of the face and specifies the sets B I and C I and

the mask, separately for each of the regions as shown in

Fig.4(g) where the number of sub-regions is 6. The algo-

rithm is then run sequentially on each sub-region, by in-

cluding only the image pixels within the mask of that sub-

region, for the payoff computation. The reconstructed sur-

face for each sub-region acts as a seed for initializing the µ

values of the boundary points of the next (adjoining) sub-

region under consideration. In this manner, the method al-

lows dealing with complex surfaces while maintaining C0

continuity along creases. In the first stage, reconstruction

of sub-region 1 shown in Fig.4(c) results in the surface

in Fig.4(d). The adjoining sub-region (nose) 3 is consid-

ered next. The boundary height values for sub-region 3 are

initialized from the surface obtained for sub-region 1 and

the reconstruction algorithm run for this sub-region. The

merged result for the two sub-regions is shown in Fig.4(f).

Finally, Fig.4(h) shows the complete reconstructed surface.

7. Finer Aspects

In this section, we present some enhancements to our

basic algorithm that allow for better control over the recon-

structed surface and help in speeding up the algorithm.

7.1. Placement of CALA

As one can expect, the convergence rate of the CALA al-

gorithm is directly governed by the number of locations in

C I . It is therefore expected that these locations be marked

out in a topology aware manner, as far as possible. Consider

the lateral view of a surface of revolution as an example. Af-

ter the boundary of the SOR is marked out and held fixed,

populating C I with more number of points on the axis of rev-

olution and fewer around the axis serves the same purpose

as having a uniform density of points all around, though

the former takes much less time to converge. Also, since

the surface has a degree of freedom at the marked locations

only, more locations need to be marked in regions where

finer detail is required.

7.2. Pyramidal Refinement

As noted before, | CW | governs the convergence rate of

the algorithm. We propose a pyramidal scheme in which

the algorithm starts from a subset C ∗W ⊂ CW and converges

to a crude solution surface. The set C ∗W being smaller, this

stage of the process is fast. In the next stage, the set C ∗W
is broadened to include a larger number of points from CW
and the algorithm is resumed. The initial µ values for the

newly added points (CALA) is arrived at from the smooth

surface S fitted through the points {(x,y,µ(x,y)) : (x,y) ∈
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(a) (b)

(c) (d)

Figure 5. Sphere (l = (0,0,3.5), f = 1.0): (a)
Original image, (b) original surface, (c) recon-
structed surface and (d) the error surface.

C ∗W} where µ(x,y) is the mean value obtained by CALA at

location (x,y) at the end of the previous stage.

8. Results

The scheme proposed has been extensively tested for a

number of cases. Firstly the simple case of a spherical lam-

bertian surface as depicted in Fig.5 was considered where

the algorithm managed to converge to an acceptable solu-

tion without any intervention from the user. User interaction

was necessary for the case of the vase, as already indicated

in section 5. The final results for the vase are presented in

Fig.6.

In the context of hierarchical reconstruction (section 6),

we have already illustrated the results for case of the Clas-

sical Mozart face, see Fig.4.

It is to be noted that in all these cases the fixed points on

the boundary were identified from the silhouette in the im-

age and were associated with the same average depth. This

is but an approximation in the context of perspective imag-

ing as the points on the silhouette should be associated with

the occluding contour [13]. Although this approximation

does affect the quality of results, but the solutions obtained

(a) (b)

(c) (d)

Figure 6. Vase: (a) Original image, (b) orig-
inal surface, (c) points in the sets B I (white
circles) and C I (black circles) and (d) the re-
constructed surface.

are acceptable.

The estimation of errors in the reconstruction has little

meaning when one allows interaction. Thus we consid-

ered the case of a spherical surface (where no user inter-

action was needed) and have compared the results obtained

with the ground truth. The absolute error was computed

on the sampled points and the error surface is presented in

Fig.5(d). In this case the boundary points were associated

with the actual depth obtained from ground truth. The error

under norm || · ||2 was of the order of 3%.

As can be expected such a learning based SFS scheme

is slow. The complete vase took approximately an hour

to reach the solution on a Pentium IV 3.06 GHz machine.

However, this is not a crucial issue. Firstly the scheme de-

scribed in the contribution requires user intervention only in

stages. The user needs to specify the initial configurations

and then can allow the algorithm to converge to a minimum.

The user can then intervene if necessary to make alterations

to the set of CALA and resume the algorithm. Secondly,

as indicated in section 7 the number of CALA can be re-

duced by placing fewer CALA at judicious locations to en-

hance the speed. Also as indicated earlier the paralleliz-
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ability of the CALA algorithm can be suitably exploited to

obtain greater speed-ups.

9. Conclusion

In this contribution, we have proposed a novel scheme

for the reconstruction of free-form lambertian surfaces. Our

approach allows user interaction when required, to help the

algorithm reach an acceptable solution. Being essentially a

non-analytical framework, the method handles perspective

as well as orthographic cases and also light sources placed

at finite distances from the object. Features such as progres-

sive reconstruction and pyramidal refinement make the task

of modeling easier.

We are extending our method to handle different mod-

els of shading and incorporate aspects like shadows, inter-

reflections, specularity etc. Learning the light source loca-

tion is also a possible direction of improvement.
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