De-Correlating CNN Features for Generative Classification

Problem Definition:

Given a handful of images as **positive** examples for the class of interest, how do I build a classifier without any labeled negative training data?

Motivating Applications:

- 1. Content based Searching and Tagging:
- Suppose you go *Rafting* with friends and take pictures:

How do you search for similar *Rafting* pictures in your photo collection using only the images taken on that day as source of class specific *training* data?

2. Improving *Recall* for a *Pure* Cluster:

Given the output of a clustering algorithm (a mix of pure and impure clusters), how can I use the images of a "pure" cluster to bootstrap a model that can help improve its recall?

- Chaitanya Desai, Jayan Eledath, Harpreet Sawhney, Mayank Bansal SRI International

Pipeline of the proposed LDA based approach:

Closest Related Work (*Malik et. at.* **ECCV 2012)**

 $M_{bicycle}^{1} = \Sigma_{bg}^{-1} (\mu_{bicycle}^{1} - \mu_{bg})$

 $M_{bicycle}^2 = \Sigma_{bg}^{-1}(\mu_{bicycle}^2 - \mu_{bg})$ $M_{bicycle}^3$

- Different viewpoints of an object have different appearances in HOG space, and are modeled using different templates.
- Each template is built using viewpoint specific foreground images and a common background model

$$_{e} = \Sigma_{bg}^{-1} (\mu_{bicycle}^{3} - \mu_{bg})$$

Outputs of different mixtures need to be calibrated using class specific negatives Whereas our model implicitly models mixtures and needs

Experiments:

Quantitative Scene Classification results on SUN-Scene database

SVM based models

Comparable performance In spite of the fact that the LDA model was not provided any class specific negative data

Qualitative results of using our LDA based classifiers:

Railway

Foreground images used for training

Ranked List (top 20) resulting from using our LDA classifier

Application to Query Expansion (QE):

Rafting

Foreground images used for training

Ranked List (top 20) resulting from using our LDA classifier

Paris 6K dataset using off the shelf CNN features