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Abstract

The problem of training a classifier from a handful of
positive examples, without having to supply class specific
negatives is of great practical importance. The proposed
approach to solving this problem builds on the idea of train-
ing LDA classifiers using only class specific foreground im-
ages and a large collection of unlabelled images, as de-
scribed in [11]. While we adopt the LDA training method-
ology of [11], we depart from HOG features and work
with those extracted from a Convolutional Neural Network
(CNN) pre-trained on ImageNet (Overfeat). We combine
Overfeat features with the LDA training methodology to
derive generative classifiers. When evaluated on a K-way
classification problem, these classifiers are almost as good
as those trained discriminatively using the same features.
Unlike the HOG based approach of [11], our classifiers
do not need any post-processing step of calibration, a step
that requires positives and negatives. Finally, we show that
in an instance retrieval setup, we can employ these gener-
ative classifiers to derive a novel query-expansion frame-
work that achieves a significant performance boost by uti-
lizing only the top ranked positive examples from an initial
nearest-neighbor list.

1. Introduction

A traditional binary classification setup typically re-
quires two disjoint sets of data: a set of positive training
examples and a set of negative training examples. Discrimi-
native training approaches (and SVMs in particular) benefit
from having a large set of negative examples. Indeed, the
merits of “hard mining” negative examples have been well
documented in vision [7, 10]. The availability of a large
set of class specific negatives, however, is not always prac-
tical. In fact, there are important real-world use cases for
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which positive examples for a class might be readily avail-
able, while negative examples might be hard to collect. For
example, in surveillance applications, it is natural for a do-
main expert to acquire a handful of images for a class of
interest (an airport terminal for instance) with the intent of
readily finding instances of this class on a new set of im-
ages. It would seem natural to treat this as a classification
problem. Each time a batch of positives for a new class ar-
rives, it would be ideal to train a classifier for future use,
wherein the input from the end user in only positive images
for the class of interest. Armed with a collection of such
binary classifiers trained over time, the surveillance expert
might now be interested in mapping a new image to one of
the “known” classes (i.e. the ones for which trained classi-
fiers exist) — a multi-class classification problem that would
be amenable to a one-vs-all setting.

Another use case where positives are readily available
but negatives might be hard to obtain is an end user of a
vision application who is interested in searching a personal
photo collection for images containing a specific scene or
category of interest. For example, consider a situation
where you take some pictures while out on a kayaking trip
with friends. Upon returning from the trip, you are inter-
ested in searching all your existing digital photo albums for
other kayaking pictures you’ve taken in the past (to either
tag the newly taken pictures or share previously taken pic-
tures with friends). It would be advantageous for the search
aplication to “learn” what you are searching for, using only
the pictures you took on that day as a source of “training”
data.

Unfortunately, the traditional route to training a classifier
would require the end user to provide classs-specific nega-
tive data. This seems like an unreasonable expectation from
someone who is mererly a consumer of a vision applica-
tion and has little knowledge about training classifiers. We
propose a solution to this practical problem that borrows the
learning methodology of [ 1], so that our “online” classifier
training does not depend on any class specific negative im-
ages. Fig. | gives an overview of our approach. Our back-
ground model is computed offline from a large collection
of unlabeled data, and can be packaged as part of a vision
system that trains classifiers online.
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Figure 1. Overview of our approach for training classifiers without class specific negatives. The green arrows indicate the outputs of various

steps.

2. Related Work

The problem of training classifiers from positive in-
stances and a common pool of unlabeled instances has re-
ceived more attention in the data mining and machine learn-
ing communities than in Vision. Notable contributions in-
clude [8, 13, 21, 20, 18]. As summarized in [8], these ap-
proaches can broadly be grouped into two categories:

1. Approaches that iterate between i) Identifying a good
set of negatives from the unlabeled examples and ii)
Training a binary classifier using positives and the
(new) set of negatives.

2. Approaches that assign weights to unlabeled examples
and train a classifier with the unlabeled examples in-
terpreted as weighted negative examples.

We believe that the modeling choices involved in such sys-
tems can be fairly nuanced and crucial for achieving good
test performance. Our approach is simpler to understand,
faster to train, has no “knobs” to tweak and results in very
similar performance compared to traditional discriminative
classifiers trained using positives and negatives. Therefore,
it is appealing from the perspective of integration into a real-
world engineering system.

Our learning methodology is very similar to the frame-
work of [11]. Interestingly, the core contribution of [11] is
unrelated to the problem we are interested in solving in this
paper. Their motivation was to develop a way of quickly
training linear classifiers in HOG space without resorting to
the more conventional and expensive SVM training (expen-
sive due to the often time consuming step of hard mining
negatives). They achieve this by training a linear discrim-
inant for each foreground class of interest in a generative
fashion (LDA). Instead of building a background model for

each class, each of the foreground classes trained in [ 1] re-
lies on a common background model that is shared across
all classes. Importantly, the background model is a rel-
atively simple to train Gaussian distribution trained on a
large collection of unlabeled images. It is this LDA train-
ing methodology with a common background model that
we adopt to solving our problem.

However, HOG as a feature does not lend itself well to
our problem. It is well known that different viewpoints
for the same category induce very different appearances in
HOG space. This necessitates the use of mixture models.
In fact, [11] train LDA classifiers for different mixtures of
a single category, where mixtures correspond to clusters in
whitened HOG space. However, when it comes to aggre-
gating these mixtures into a single category level classifier,
they find it necessary to calibrate these mixtures in order to
compete them against one another at test time. The cali-
bration (similar to Platt’s scaling) is done by two levels of
discriminative training (SVM + logistic regression) on a set
of mixture specific positives and a set of negatives. Our set-
ting is not amenable to such forms of calibration, because
we do not have any class specific negatives to begin with.
Ideally, we would like to operate in a feature space that ob-
viates the need for mixture models; a feature space that im-
plicitly captures changes in appearance without the need to
explicitly model the modes in distribution. The argument
for calibrating within-class LDA mixtures in HOG space
can be extrapolated to LDA models across classes. There-
fore, we look beyond HOG as a features. Our experimental
results demonstrate that using the LDA framework of [11]
with HOG does poorly in the absence of calibration.

One of the biggest breakthroughs in vision in the last
couple of years has been the staggering success of multi-
layered Convolutional Neural Networks on various bench-
marks, a wave that was initiated by the phenomenal suc-



cess shown by these models on the ImageNet competition
[12]. Judging by the performance of CNNs on ImageNet,
they seem to exhibit several desirable invariance proper-
ties from a classification standpoint (scale, color, viewpoint,
3D pose, etc.). This leads us to believe that these Ima-
geNet trained CNNss satisfy our requirement of implicitly
capturing changes in appearance without the need to ex-
plicitly model the modes in distribution. Curiously, re-
searchers have shown that the features generated by a CNN
pre-trained on ImageNet achieve “astounding” results [16]
when applied on a novel dataset and a novel classification
problem. Others have also shown clever ways of adapting
the ImageNet CNN to a new domain by swapping out the
last two layers of the Krizhevsky architecture with domain-
specific layers [14]. Unfortunately, a bottleneck associated
with such forms of adaptation is that it requires examples
from an explicit “negative” class (i.e. images that do not
belong to any of the positive classes in the new domain),
precisely the sort of bottleneck we want to overcome.

Therefore, instead of resorting to any fine-tuning, we fol-
low [16] and use features that come from a pre-trained CNN
[17]. We combine these features and train LDA classifiers
for each positive class using a common background model.
Like [1 1], our background model is built from a large col-
lection of unlabeled images. Note that our unlabeled dataset
can contain images of several classes, including the posi-
tive class. As shown in the figure, our classifier is based on
LDA, wherein the only parameter computed online is the
mean of the foreground class. The covariance and the mean
of the unlabeled set are computed offline and are re-used
each time a classifier for a new foreground class needs to be
trained.

In the context of using CNN features off-the-shelf, [16]
showed promising results on various classification and re-
trieval benchmarks using Overfeat [17]. Their classifiers
were discriminatively trained SVMSs using positives and
class-specific negatives. To the best of our knowledge, we
are the first to show competitive classification performance
using CNN features trained generatively and without any
class specific negatives. As part of our contribution, we
show that using Overfeat’s 1000-dimensional output layer
(corresponding to the 1000 ImageNet categories) as a fea-
ture vector works favorably compared to using the 4096-
dimensional fully connected layer.

3. Generative Classifiers using LDA

LDA classifiers have been a widely used tool in Vision,
especially for the problem of Face Recognition. Examples
include [2, 3, 4, 9]. The core mathematical idea used in
such examples is an extension of the Fisher linear discrim-
inant to K classes. The Fisher linear discriminant is de-

fined as the linear function w” x (parameterized by w) that
wlS,w
wTl S, w

maximizes the criterion J(w) = , where the ma-

trix S, is the so-called “within” class scatter and the ma-
trix Sy is the “between” class scatter matrix. Finding the
optimal solution w* that maximizes .J(w) amounts to solv-
ing a generalized eigenvalue problem, and when the data
comes from two classes, the optimal solution is given by
w* = S (lpos— Uneg) Where 1pos and fi,,c4 are the means
of the positive and negative class respectively.

The extension to K classes is an optimal projection ma-
trix W* = [wi|ws|...|wj_,]. The columns of W* are
the eigenvectors of the K — 1 largest eigenvalues of the ma-
trix S, 1.S,, where the between and within class matrices S},
and S,, now decompose over the K classes.

Therefore, multi-class LDA assumes that K disjoint sets
of positive examples for each of the K classes are available,
an assumption that may not always be practical. Instead, we
choose to train K binary classifiers, which is more consis-
tent with our use case wherein positive examples arrive in
batches (one class at a time).

For binary classification, when the class conditional dis-
tributions are modeled as Gaussian and the two classes
share a common co-variance matrix, the optimal LDA clas-
sifier is given by w* = 7! (1p05 — fineg), Where X is the
shared covariance across the two classes. Note that even
in the binary setup, the negatives are chosen so as to not
contain instances of the positive class. However, as pointed
earlier, one of the core insights of [11] was to show that
competitive binary LDA classifiers can indeed be trained
without class specific negatives (as long as some form of
calibration using positives and negatives is done as a post-
processing step). In particular, they train an optimal binary
classifier as w;,,, = legl(upos — [thg), Where bg denotes a
large common pool of unlabeled images. This is the regime
we operate in as well, as shown in Fig. 1, except that our
classifiers are trained in the space of CNN features, and re-
quire no extra calibration.

4. De-correlated CNN for Scene Classification

To evaluate the central hypothesis of this paper, we com-
pare the performance of our generative classifiers (trained
using LDA) on Overfeat features with those that are trained
discriminatively (using SVMs). Additionally, we are also
interested in comparing Overfeat features to a host of other
features that have been traditionally used for classification,
under both, the discriminative as well as generative settings.
Our experiments are conducted on the SUN-397 dataset that
was introduced by Xiao et al. [19]. This dataset contains
108,754 images from 397 well-sampled scene categories
with at least 100 images per category. Importantly, there
is a sufficient disconnect between the 1000 ImageNet cat-
egories on which Overfeat was trained and the 397 SUN
categories. The dataset is divided into 10 overlapping parti-
tions with each partition containing 50 training and 50 test
images for each of the 397 categories. The evaluation pro-
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Figure 2. Recognition performance on the SUN-397 scene dataset
using (a) generatively and (b) discriminatively (reproduced from
Fig.17(b) in Xiao et al. [19]) trained features.

tocol demands that the average recognition performance on
the test sets across the 10 partitions be reported. Other de-
tails can be found in [19] as well as the authors’ web-page.

Generative vs. Discriminative: Fig. 2 compares the per-
formance of our generatively trained classifiers (Fig. 2(a))
to the results reported by [19] based on discrimi-
natively trained classifiers (Fig. 2(b)). Each plot in
both, Figs. 2(a)&2(b) corresponds to a particular feature.
Fig. 2(b) has been reproduced from a recent journal sub-
mission of [19] that is publicly available on the primary
author’s web-page. We briefly explain how to interpret the
plots. The x-axis represents varying number of training ex-
amples per category, keeping the test set constant, and the
y-axis represents the average accuracy and standard devia-
tion across the 10 splits. For instance, for the point n = 20
on the x-axis, the following experiment will be repeated for
all the 10 splits for any given feature:

e Pick the first 20 examples from each of the 397 cate-
gories for training, while all 50 test examples per cat-
egory in the given split are picked for testing. Train
397 binary classifiers and evaluate them in a one-vs-all
fashion on the test set. Compute the average K-way
classification accuracy from the class-confusion matrix
(call it split-specific-accuracy).

The point and the error-bar on the y-axis for n = 20
represents the average accuracy and the standard deviation
over the 10 split-specific-accuracies. To be consistent with
[19], our generative classifiers are evaluated in a one-vs-all
fashion i.e. if x* represents a test instance, then its class

label y* is given as y* = arg, max(w} x*) where

W = Zb;l(/fffg,k — [ibg) (L

is the LDA classifier for the k*" class and fi 4 1, is the mean
of the k*" foreground class.
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Figure 3. Correlations learned from the final layer of the Overfeat
features on the SUN-397 scene dataset.

Discriminative Features: We refer the reader to [19] for
a detailed description of the features used in Fig. 2(b). Note
that for Overfeat, the authors work with the 4096 dimen-
sional vector produced by the fully connected layer of the
CNN. For every plot shown in Fig. 2(b), a one-vs-all SVM
was trained by combining histogram intersection kernels on
appropriately normalized features.

Generative Features: We build and evaluate generative
classifiers for two variants of Overfeat features in addition
to the six best performing features from Fig. 2(b). For
these six other features, we use the pre-computed descrip-
tors made publicly available by the authors of [19] on their
web-page. Our training of LDA classifiers on these six other
features is done based on (1) where the various terms of the
equation are computed in the feature space of interest. The
background model (X, and p1,) for all features is built us-
ing all the 108,754 images from the SUN dataset.
We briefly describe the features plotted in Fig. 2(a):

e Overfeat-F-L2: The 4096 dimensional vector pro-
duced by Overfeat followed by L, normalization. Lo
normalization was also suggested in [16].

e Overfeat-O-L2: The 1000 dimensional vector pro-
duced by the output layer of Overfeat followed by Lo
normalization. We believe we are the first to publicly
report results using the output layer from an off-the-
shelf CNN trained on ImageNet.

e Rest of the features: For reference, we note that the
discriminative training of the six other features we con-
sider (as reported in Fig. 2(b)) is based on training
SVMs using histogram intersection kernels (details in
[19]). In some cases, the histograms at multiple spa-
tial levels are combined using a weighted combination
of intersection kernels. For building generative classi-
fiers, we simply concatenate the histograms at possibly
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multiple levels of an image into a single vector. Note
that the plot for HoG in Fig.3 a is a proxy for how a di-
rect application of [ 1] would perform on this problem
without any calibration. In fact, the plot corresponds to
a BoW model, whereas [11] uses rigid templates. So
in some sense, the plot is an upper bound on what the
rigid templates of [! I] would have done, showing the
value of replacing HOG with CNN features.

One of the benefits of using the 1000-D output layer of
the CNN as a feature is that it allows a direct mapping of
the correlations captured by ¥, to the 1000 semantic Im-
ageNet categories that the network was trained on. Fig. 3
is a visualization of 3;,. We note that the 1000 ImageNet
categories exhibit a “banded” structure. For example, the
first 200 or so categories are all animals, the next few cate-
gories are all vehicles, and so on. From Fig. 3, we see that
the animal categories are strongly correlated to each other
(the big block on the top left), and so are the vehicle cate-
gories (the next small block around the diagonal). Similarly,
the second red “band” of animal categories is strongly de-
correlated with the furniture categories. Note that the fig-
ure is not capturing ground truth correlations in ImageNet
data. Instead, it is characterizing the behaviour of a pre-
trained CNN on a novel set of images (the SUN dataset in
this case), a dataset whose class labels are reasonably differ-
ent from the ImageNet labels. It is these correlations (both,
positive and negative) that guide the LDA classifier trained
on CNN features.

To extract features from Overfeat, the input image is re-
sized to 221 x 221 as mentioned in [16]. The six best per-
forming features from Fig. 2(b) show a dramatic drop in
performance when trained and evaluated using LDA with a
common background. Overfeat features on the other hand,
show little drop. Overfeat was pre-trained in a supervised
manner on more than a million images from ImageNet. We
feel this makes them more resilient to training without class-
specific negatives compared to other hand engineered fea-
tures. Note that while the discriminative SVM classifiers
would have required explicit class specific negatives and
possibly a few hours to train, the generative classifiers are
instantaneous to train. Unlike [11], our CNN classifiers re-
port competitive performance without any post-processing
involving a calibration across the K classes (we suspect that
such additional calibration using positives and negatives can
only improve our results).

Role of Correlations: How important are the correlations
captured by X, for overall recognition accuracy? To ad-
dress this question, we begin by rewriting the LDA classi-
fier for class k as wy, = (Xpg + M) " (i fg.k — Hg) Where
A is a scalar and I is the Identity matrix. When A = 0 we
get back the original equation (1). However, as A increases,
g + A comes close to becoming an isotropic covariance

recognition rate
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Figure 4. Importance of correlations captured by ¥54. As X in-
creases, Ly + Al comes close to becoming an isotropic covari-
ance matrix, reducing the ability of the LDA classifier to benefit
from the correlations captured by X, reducing the overall recog-
nition accuracy. The recognition rate shown corresponds to the
Overfeat-O-L2 features from Fig. 2.

matrix, and the decision boundary captured by wy, is simply
a hyperplane located halfway along the vector firg 1 — fivg
and perpendicular to it. Fig. 4 shows the adverse impact of
reducing the LDA model’s ability to capture these correla-
tions on the overall accuracy.

Role of Normalization: We show the effect of normaliz-
ing the CNN features (both the output layer and the fully
connected layer) prior to training the generative classifiers
in Fig. 5(a). We see that normalizing the 1000-D output
layer substantially improves the results compared to nor-
malizing the 4096-D fully connected layer. We believe this
is due to the fact that the norm values of the 4096-D feature
exhibit a much smaller range compared to the norm val-
ues of the 1000-D feature (see Fig. 5(b)) so the latter ben-
efits more from normalization. Note that from a practical
perspective, although normalizing features introduces extra
computation, it is trivial in comparison to the time spent
in extracting the CNN features (for instance, Overfeat takes
about 2-3 seconds on a 221 x 221 image on a modern CPU).

Choice of Background Model: Fig. 2(a) uses all of SUN
data to build the background model. To understand the role
of dataset bias in building the background model and its
impact on classification performance, we repeated the ex-
periments conducted in generating Fig. 2(a) based on back-
ground models created under two additional settings: (a)
Use the entire PASCAL 2011 dataset (14000 images), and
(b) Use data from the same split in SUN that contained the
50 training examples for each class (19850 images). The
foreground model training and the evaluation protocol was
kept the same as the setup used in generating Fig. 2(a).
Fig. 6 plots the classification accuracy w.r.t. these dif-
ferent background models. We notice that when the back-
ground model is built from PASCAL, there is indeed some
drop in performance. This is not all that surprising, given
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Figure 5. Effect of normalization (L1 and L2) of CNN features
for LDA classifiers: (a) Recognition performance on the SUN-397
scene dataset. While normalization adds little to classifiers built on
the fully connected layer, when using the 1000-D output layer for
classification, Lo normalization doubles the accuracy. See text for
details. (b) Kernel density estimates computed on the L2 norms of
CNN features extracted from the fully connected layer (4096-D)
vs. the final output layer (1000-D) on all of SUN dataset. The
range of norm values for the output layer is much greater than the
range of values for the fully connected layer.
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Figure 6. Recognition performance on the SUN-397 scene dataset
using LDA-Overfeat features trained with different background
models.

Table 1. Average Binary Classification Results
CNN 95.7% || Geo-Textons 83.8%
HOG2x2 90% SelfSim 89%
Dense SIFT  89.6% GIST 83.4%
Texton 88.5%

that the PASCAL dataset has 20 classes and is more of a de-
tection benchmark, whereas the SUN dataset has 397 scene
categories. Therefore, the behavior of Overfeat on the two
datasets as captured by the respective covariance matrices
is not the same.

Binary Classification Performance: We also evaluate
our LDA classifiers in a purely binary classification regime.
For this experiment, we randomly picked one of the ten
SUN splits. Recall that a single split has 19850 images
(397 SUN classes x 50 images per class) for both train-
ing and testing. We used the 50 training images for each
class to build 397 binary classifiers using LDA. These bi-

Figure 7. Qualitative Results of applying LDA-CNN classifiers for
two categories from the SUN dataset: Rafting (top row) and Rail-
way Train (bottom row). The left column shows 20 out of the
50 training images that went into training the classifier. The right
column shows the top 20 out of the 19850 test images (397 SUN
classes x 50 images per class) ranked left to right, top to bottom
by the classification score. Green boxes indicate true positives, red
boxes indicate false positives.

nary classifiers were independently evaluated on the test set,
i.e. they were not competing against each other, but pro-
ducing a classification score on each test image. The area
under the ROC curve on the 19850 test images (50 true pos-
itives and 19800 false positives) was computed for each of
the 397 classes. Table-1 reports the average AUC across
the 397 classes for various features. For binary classifica-
tion, the LDA classifiers show less variation in performance
across the features, even though CNN features still perform
the best. Given that binary classification is a much sim-
pler problem, LDA classifiers designed using any reason-
ably well engineered feature results in decent performance.
However, when classifiers have to compete (as is the case
with K-way classification), LDA classifiers for non CNN
features suffer as a result of no proper calibration between
them, while the LDA classifier built using CNN features ap-
pears to be robust to such issues.

In Fig. 7, we show qualitative results that depict the
ranked list of images obtained by applying the LDA-CNN
classifier trained on 50 positive images from two of the SUN
categories viz. Rafting and Railway Train. Notice that some
of the false positives are an artifact of how images in SUN
have been labeled. For instance, Railroad Track is a sepa-
rate category from Railway Train.

5. De-correlated CNN for Instance Retrieval

In addition to classification, CNN features have shown
promise for the instance retrieval task as well. In particular,
Razavian et al. [16] demonstrated a performance improve-
ment over other low memory footprint methods by using
the Overfeat-F-L2 features. While they discussed specific
tricks like spatial-search and feature-augmentation to im-
prove on the overall performance, we will focus on com-



plementary query expansion techniques [6, 5, 1] to demon-
strate that a decorrelated version of the same CNN features
can lead to a significant performance boost without relying
on negative data typically used for the discriminative ver-
sion of query expansion.

Let f, be the CNN feature extracted from the query
(region-of-interest) and f; be the corresponding feature ex-
tracted from reference image ¢ for i € {1,..., N} in the
database. A ranked list Ny = {i1,i2,...,in} can be gen-
erated by simply ordering the database images in increas-
ing order of the L2 distance ||f; — f;||o. We will refer to
this scheme as the nearest-neighbor (NN) ranking method.
Given a NN ranked list of images, two query expansion ap-
proaches have been suggested in the literature to improve
retrieval accuracy:

Average Query Expansion (AQE): In this approach
[6, 5], the query feature f, is averaged with the features
from the top-K retrieved images in the NN-set /,, to gener-
ate a new query feature, f;, = ﬁ (fq + Zszl fzk) This
feature is then used to re-query the database using the NN
scheme to generate the output ranked list.

Discriminative Query Expansion (DQE): In this
approach [1], instead of simply averaging the fea-
tures from the top-K retrieved images, a discriminative
linear-SVM classifier is trained by using these features
Fr = {f,,fi,,... ;. } as positive samples and features
from M images at the bottom of the NN-list F_ =
{fix _arp1s---»fiy b as negative samples. This classifier
wp is then applied to the database image features and
the output ranked list is generated by sorting on the value
WDTfZ‘.

Generative Query Expansion (GQE): In this paper, we
propose a novel query expansion approach that does not rely
on the negative set F_. Instead, we use the LDA-based
approach to directly learn a generative classifier from the
positive set F by first computing the foreground mean 14
as the mean of the features in F and then applying (1)
with the pre-computed background model i, to compute
the weight vector wg. This classifier wg is then applied
to the database image features like in the DQE case, and a
ranked list is generated by sorting on the value wg” f;.

We demonstrate the advantage of using de-correlated
CNN features in the generative query expansion frame-
work on the widely-used Paris6k buildings dataset [15].
This dataset consists of 6412 images of various buildings
and monuments from Paris and has a pre-defined set of
55 queries for evaluation. To baseline the performance of
CNN features for instance retrieval on this dataset, we fol-
low the same convention as [16] and extract Overfeat-F-
L2 features from the smallest square containing the query
region-of-interest. No region-of-interest or spatial-gridding
is employed for the reference database images.

Fig. 8 plots the mean average precision (mAP) achieved
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Figure 8. Performance evaluation of generative query expansion

using de-correlated CNN features for instance retrieval on the

Paris6k dataset.

using each of the above query-expansion techniques with
varying number K of the positive samples used to create
the positive set F;.. The number of negative samples M
was kept fixed at M = 200 to be consistent with the DQE
settings suggested in [1]. We tried different values for the
parameter C' (the regularization parameter for SVM train-
ing) for DQE, and plot the performance for C=1, which we
found to be the best. We can observe that the DQE approach
leads to a higher mAP initially when using only the top 2
positive samples but the GQE quickly surpasses this perfor-
mance as more positive samples are added to the training
data. Additionally, GQE is more robust to outliers in the
positive set as it retains a higher mAP for a higher K while
the performance of DQE quickly degrades.

In Fig. 9, we show qualitative results on a query image
(Notre Dame) from the Paris6k dataset. In each row, we
show the top-20 images retrieved from the dataset by using
one of the methods described above for the same query. The
first row shows the results with the NN ranking method and
exhibits a number of false-positives (shown as red boxes).
From this list, we pick the first 10 results (thus K = 10
per the above description) to apply the different query ex-
pansion methods. In the second row, application of AQE
leads to a slight improvement in the NN results. The third
and fourth rows show that the results of DQE and GQE are
significantly better, with the GQE method removing all the
false-positives for this query. Note that this is the case even
when the top-10 NN list (i.e. the positive training set F )
has a number of outliers showing the robustness of our gen-
erative approach.

6. Conclusion

We propose a practically appealing solution to the prob-
lem of training a classifier from a collection of positive and
unlabelled data by combining the LDA classifier training
method of [11] with off the shelf CNN features. Our ap-
proach shows promising results on a large and challeng-
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ing Scene Classification benchmark as well as on the prob-
lem of Query Expansion for Instance Retrieval. On Scene
Classification, our method does nearly as well as discrim-
inatively trained methods using the same positive exam-
ples and a large collection of negative examples. In the
space of CNN features, our approach to Query Expansion
shows significant improvement over Average Query Expan-
sion (AQE) and Discriminative Query Expansion (DQE).
We believe that the proposed approach to Query Expansion
presents an interesting avenue that needs to be explored in
more detail. For example, this technique can be applied
even on Bag of Words models that operate in other feature
spaces. Understanding the relative merits of various fea-
tures on which these generative models are trained, as well
the charactersistics of the datasets on which they shine com-
pared to AQE and DQE are questions worth exploring in
their own right, and we see them as future work.
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