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Abstract

We propose a principled statistical approach for using
3D information and scene context to reduce the number of
false positives in stereo based pedestrian detection. Current
pedestrian detection algorithms have focused on improving
the discriminability of 2D features that capture the pedes-
trian appearance, and on using various classifier architec-
tures. However, there has been less focus on exploiting the
geometry and spatial context in the scene to improve pedes-
trian detection performance.

We make several contributions: (i) we define a new 3D
feature, called a Vertical Support Histogram, from dense
stereo range maps to locally characterize 3D structure; (ii)
we estimate the likelihoods of these 3D features using ker-
nel density estimation, and use them within a Markov Ran-
dom Field (MRF) to enforce spatial constraints between the
features, and to obtain the Maximum A-Posteriori (MAP)
scene labeling; (iii) we employ the MAP scene labelings to
reduce the number of candidate windows that are tested by a
standard, state-of-the-art pedestrian appearance classifier.
We evaluate our algorithm on a very challenging, publicly
available stereo dataset and compare the performance with
state-of-the-art methods.

1. Introduction

Detecting pedestrians from images is a fundamental
problem in numerous applications ranging from mobile
robotics to autonomous driving and intelligent vehicles.
Large pose variations of the human body, appearance
changes due to clothing, background and illumination vari-
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ations, and occlusions in complex urban environments, all
contribute to making pedestrian detection a very challeng-
ing computer vision task.

During the last few years, significant progress on pedes-
trian detection has been reported in the literature using both
stereo [8, 10] and monocular cameras [16, 4, 19, 18, 17, 6].
However, substantial improvements are still required to re-
duce the number of false positives per frame to an accept-
able level for practical applications, while maintaining high
detection rates. For example, Dollar et al.[S] recently re-
ported benchmark performance of current state of the art
approaches on large dataset, where the best performance
reaches on average 60% detection rate with one false pos-
itive per frame. This paper proposes an effective scheme
of reducing false detections by adopting structural scene
classification based on stereo depth map. Although stereo-
based depth map is often noisy and computationally expen-
sive to compute, the proposed approach exploits 3D scene
geometry and discovers scene structure from noisy depth
representation. This approach can in fact achieve overall
a computationally more efficient solution and produce im-
proved classification performance.

The pedestrian detection system can be largely divided
into monocular camera and stereo-based systems. Monoc-
ular pedestrian detectors typically employ cascaded classi-
fiers trained using features that capture the 2D appearance
of a person. Examples include the HoG (Histogram of Gra-
dients) descriptor of Dalal and Triggs [4], or the covariance
descriptor of Tuzel et al. [18]. Since no scale information
for potential targets is directly available in monocular im-
ages, classifiers are typically run at multiple scales, evalu-
ating a large number of hypotheses per image frame. This
tends to incur more false detections some of which may not
lead to any valid interpretation in terms of scene structure.
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Recently, more discriminative features and new classifica-
tion methods have been proposed with improved results on
public dataset, however relatively little focus has been put
on exploiting scene geometry and spatial context that can
potentially allow efficient target object detection.

Stereo vision has a significant advantage over monocular
vision, because it produces 3D depth maps that can be used
to extract scene geometry and classify structures such as
ground plane, buildings, and vegetation. The structural cues
in the scene can be used to constrain further computation
such as appearance-based classifiers, to focus on relevant
scene parts. In addition, stereo eliminates the need to search
over a large number of scales. Recent research underscores
the significant reduction in false positives and increased de-
tection rates achieved when stereopsis is used [10, 14, 8].
Despite these advantages, existing stereo based pedestrian
detectors make limited use of 3D structure for finding candi-
date regions on which a pedestrian classifier can be applied.
For example in [10] a sparse stereo for the initial pedestrian
detection is used, resulting in poor foreground/background
separation [10]. Similarly, structure from motion (SfM) has
been used to constrain 2D image based pedestrian detec-
tion [8].

We present a novel dense stereo based pedestrian de-
tection algorithm that uses depth-guided structure label-
ing to substantially reduce the number of false positives
while maintaining high computational efficiency and de-
tection rates. We represent and exploit 3D scene geometry
and context within a principled statistical framework to re-
duce the number of pedestrian candidate windows that are
subsequently tested by a state-of-the-art appearance based
classifier. We make several contributions in this paper: (i)
we define a new 3D feature, called a Vertical Support His-
togram, from dense stereo range maps to locally charac-
terize 3D structure; (ii) we learn the likelihoods of these
3D features using kernel density estimation, and use them
within a Markov Random Field (MRF) to enforce spatial
relationships between the features, and to obtain the MAP
scene labelings. The MRF can be extended to use more dis-
criminative features such as 3D shape context or spin im-
ages obtained from more accurate, global stereo algorithms
such as [22]; (iii) we employ the MAP scene labelings re-
turned by the MRF to prune candidate windows returned
by a 3D template matching algorithm such as [3], and clas-
sify the remaining windows using a standard state-of-the-
art classifier cascade trained using appearance features. We
evaluate our algorithm on a very challenging stereo based
dataset, publicly available from [8] obtaining promising re-
sults, and also compare the performance with state-of-the-
art methods.

The paper is organized as follows. Section 2 presents re-

lated work beyond what is discussed above. Starting with
an overview in Section 3, the depth-guided structure clas-

sification approach is described in Section 4. In Section 5
we briefly discuss the data and evaluation methodology fol-
lowed by results and comparison with other approaches.

2. Related Work

Ess et al. [8] describe a stereo-based system for 3D dy-
namic scene analysis from a moving platform, which in-
tegrates sparse 3D structure estimation with multi-cue im-
age based descriptors ( shape context computed at Harris-
Laplace and DoG features [15]) to detect pedestrians. The
authors show that the use of sparse 3D structure signifi-
cantly improves the performance of pedestrian detection.
Still, the best performance cited is 40% probability of de-
tection at 1.65 false positives per frame. While the structure
estimation is done in real time, the pedestrian detection is
significantly slower.

Gavrila and Munder [10] propose PROTECTOR, a real-
time stereo system for pedestrian detection and tracking.
PROTECTOR employs sparse stereo and temporal con-
sistency to increase the reliability and to mitigate misses.
The authors report 71% pedestrian detection performance
at 0.1 false alarms per frame without using a temporal con-
traint with pedestrians located less than 25 meters from the
cameras. However, the datasets used were from relatively
sparse, uncluttered environments. Recently, Dollar et al. [5]
introduced a new pedestrian dataset and benchmarked a
number of existing approaches.

Hoeim et al. [12] present a method for learning 3D con-
text from a single image, using appearance cues to infer
simple geometric labelings. Hoiem et al. [13] present a
probabilistic detection framework which exploits the over-
all 3D context extracted using [12]. The authors argue that
object recognition cannot be solved locally, but requires sta-
tistical reasoning over the whole image [13].

Wojek & Schiele [21] propose a probabilistically sound
combination of scene labeling and object detection using a
Conditional Random Field but their method relies on ap-
pearance rather than 3D. Brostow et al. [2] investigate the
use of 3D features from structure-from-motion to classify
patches in the scene.

3. Overview

The proposed approach actively utilizes depth informa-
tion obtained from stereo computation. Given a depth map
of a scene, first a 3D template-based object detector is ap-
plied to find candidate target object hypotheses. Simul-
taneously, the depth map is processed with generic scene
descriptor to identify image regions that match predefined
structure classes. The scene labeling from these image re-
gions is then combined with object detector hypothesis to
produce a final set of object candidates. The resulting hy-
potheses are passed to appearance-based pedestrian classi-
fiers for further processing. A brief description of template
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based object detector and pedestrian classifier is given be-
low.

Stereo based pedestrian detector We employ a stereo
based generic object detection algorithm similar to [3] to
generate initial pedestrian candidate windows exclusively
from range maps. The algorithm from [3] used template
matching (through correlation) of pre-rendered 3D tem-
plates of objects (e.g., pedestrians and vehicles) with the
depth map to detect objects. The 3D template matching was
conducted in a coarse to fine manner over a 2D grid over-
layed onto the local X Z horizontal plane; at each grid loca-
tion, a 3D template was matched to the range image data by
searching around the X and Z directions, and around the Y
(vertical) direction according to the local pitch uncertainty
due to calibrations and bumps in the road surface. Loca-
tions on the horizontal grid corresponding to local maximal
correlation were returned as candidate object locations.

Appearance based pedestrian classifier For the final
pedestrian detection we have chosen the HoG-SVM method
of Dalal and Triggs [4]. Briefly, the HoG-SVM pedestrian
detection method uses a local distribution of intensity gradi-
ents to capture the pedestrian appearance. A weak geomet-
ric context between the gradients is enforced by comput-
ing the histograms within local small regions (cells). The
combination of the histogram entries represents the HoG
descriptor. After appropriate normalization, the HoG fea-
tures are used to train a support vector machine (SVM) clas-
sifier. The SVM classifier is employed for making the final
detection of a candidate window into a pedestrian or non-
pedestrian.

4. Structure Classification

A key step in our method for pedestrian detection is
depth-based classification of the scene into a few major
structural components. Given an image and a sparse and
noisy range map, the goal is to probabilistically label each
pixel as belonging to one of the following scene classes
(see Table 1 for a legend): ground, tall vertical structure,
overhang and (pedestrian) object candidates. The intuition
behind our formulation is as follows: An occupied cell in
the range map of a scene provides evidence for the pres-
ence of one or more of the structure classes. The struc-
ture classes outlined above typically span multiple adjacent
cells in a scene with discontinuities at the boundaries of the
classes. Therefore, local evidence for the presence / absence
of a class can be combined with neighborhood constraints
to probabilistically estimate the class labels.

The range map from stereo does not provide enough res-
olution to differentiate between a group of people and a ve-
hicle and hence we label all vehicle-like objects as object
candidates and let the appearance-based classifier resolve
any detections in these regions. Note also that these classes
have been chosen to competitively label pixels amongst a

Table 1. Structure classes used for scene labeling
Tall vertical structure (magenta)
Overhanging structure (green)
Ground (yellow)

Candidate objects (blue)

0|Q|o|<

few commonly occurring structures as a precursor to pedes-
trian versus non-pedestrian classification. This is in con-
trast with traditional detectors that directly apply pedes-
trian / non-pedestrian classification in which the negative
examples themselves form a large set of structured classes.
We separate the structured classes further into ones that are
distinct from the pedestrian class. In our method, if large
numbers of pixels can be rejected as being part of generic
structural classes, we can substantially reduce the number
of false hypotheses that are presented to a pedestrian / non-
pedestrian classifier - gaining us both in performance (FP
rate) and computation.

We perform structure classification using depth maps.
An example depth map is shown in Fig. 1. The map is
pseudo-colored with red denoting close-range objects, cyan
denoting far-off objects and black denoting missing depth.
The depth-map illustrates a number of issues: (i) objects
appear bloated in the range-map due to the stereo integra-
tion window, (ii) the characteristic noise in the range values
is observable as scattered fragments, and (iii) the occlusion
boundaries between objects are very noisy.

To robustly handle depth-map errors, first, we define a
structure called the Vertical Support Histogram to accumu-
late 3D information over voxels in the vertical direction. In
a given frame, we will compute a feature vector using this
structure and subsequently use the feature vector to learn
the likelihood of each pixel belonging to a given structural
class. Next, we make use of the scene-context constraints
arising from the camera viewpoint by formulating the label-
ing problem as an MRF where the smoothness constraints
allow us to reason about the relative positioning of the 3D
structure labels in the image. This reduces error in labeling
due to depth inaccuracies and gives us an overall smooth
labeling of the scene.

4.1. Bayesian Labeling

The problem of Bayesian Labeling is concerned with de-
riving a labeling L. = ¢ of image patches II using a set of
image observables r. Suppose that we know both the a pri-
ori probabilities P(¢) of labelings ¢ and the likelihood den-
sities p(r|¢) of the observation r. The best estimate one can
get from these is one that maximizes the a posteriori prob-
ability (MAP) which can be computed using the Bayesian
rule,

P(lr) = p(r|t) P(¢)/p(r) (1)
where p(7), the density function of 7, does not affect the

MAP solution. In the following, we describe our approach
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Figure 1. Vertical Support Histogram. Points from the range map are projected to the bins of a 2D histogram in the ground-plane coordinate
system. Each histogram bin captures a different height band. The diagram illustrates a 3-bin histogram.

to estimate the likelihood densities p(7|¢) and the prior
probabilities P(¢) for this labeling problem.

4.2. Likelihood Densities of Structural Labels

4.2.1 Vertical Support Histogram

We first represent the 3D scene as distributions of recon-
structed 3D points with respect to a ground plane coordi-
nate system.! The ground plane (X Z in our convention) is
divided into a regular grid at a resolution of X,.c5 X Z,cs. At
each grid cell, we create a histogram of distribution of 3D
points according to their heights. All the image pixels that
map into a given X, Z coordinate participate in that cell’s
histogram. The heights, Y coordinate, of all the points in a
cell are mapped into a k-bin histogram where each bin rep-
resents a vertical height range. We call this structure by the
name Vertical Support Histogram (VSH) and denote it by
V. Atany given grid cell, V[g(X, Z)] = [s7,85,--- ,s7]T,
where the entry s/ measures the support for the it"-bin of
the histogram. Fig. 1 shows how image points and the cor-
responding depth estimates are mapped to 3D distributions
for an example histogram with & = 3 bins.

In order to compute the supports, s9, robustly from noisy
range estimates at each pixel, we use a mean-around-the-
median robust estimate of range. We define a w X h patch
at each pixel (x, y). A robust range estimate is computed for
each patch (in the following, we use pixel and patch inter-
changeably, with the idea that the context makes the sense
clear). Image points, (z,y), with the robust range estimate
Z, are mapped to the corresponding (X, Z) grid cell with
height estimate Y. This value Y is used to increment the
appropriate bin of the VSH at (X, Z).

Each cell of the histogram is normalized by dividing with
the maximum number of pixels that can project to this cell.
For a cell at a distance Z from the camera (with horizontal
and vertical focal-lengths f, and f, respectively), the max-
imum number of pixels in each image row is,

Nmax(z) = Xres : fz/Z

row

and the maximum number of image rows in the height-band
[Hmina Hmaa:] iS,
mam(Z) — (Hmaz _

col

IThe ground plane can be estimated using any of a number of well-
known techniques applied to the reconstructed stereo points, see e.g. [14].

i
- Tall vertical structure (V) | .~ | e
+ Ground (3) ¢ |
O Candidate objects (C) [

—o

f=1=)

Figure 2. Two views of the feature space showing the distribution
of vectors from which the class conditional likelihoods are esti-
mated (note that the fourth component, H, is not shown).

where H,,,, is determined taking into account the maxi-
mum height that is visible in the image at the distance Z.
This gives the normalizing factor for the cell to be,

max (Z)

col

N(Z) = N™az(Z).

Tow

V(X,Z) is defined in 3D space. We transfer this 3D
representation to the 2D image and augment it with the
3D height. At a given image patch p, we use the robust
range estimate Z to project this patch to a footprint (col-
lection of cells) in the X Z-grid coordinate system. An ag-
gregate of the VSH values for the cells within this footprint
serves as the total support of p. We define H? as the av-
erage height estimate of the image pixels within the patch.
Subsequently, each such image patch, p, is associated with
a (k + 1)-D feature vector: r, = [V(X,Z)",HP]T =
(s}, sb, .- sh, HP]T.

4.2.2 Learning the Likelihood Densities

The vertical support histogram captures the distribution of
3D points in any given scene in terms of quantized height
bins. V (X, Z) is a representation of the scene in front of a
camera. In order to associate each image patch with struc-
tural labels, we compute likelihoods for the augmented fea-
ture vector, 7, conditioned on the specific structural labels
defined earlier.

We randomly sample a small number (= 100) of frames
from sequences in typical urban driving scenarios. In each
frame, structures are coarsely hand-labeled as tall vertical
structures (buildings), candidate objects (pedestrians, vehi-
cles), ground and overhanging structures. We experimented
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(b) Plan views of each of the three VSH components: hj,, (left), A, ;q(middle), hp;(right).

i .

(d) Image likelihoods conditioned on the four labels, respectively, candidate objects, vertical structures, overhangs and the ground plane.

Figure 3. Likelihood density estimation for structure classification. In (b), tall vertical objects (like buildings) span all three histogram bins
while objects with low profile (like vehicles and people) span just the first bin. In (c), the bins are projected back to image space and the
structures that projected to the histogram bins can be identified. The bin values provide a feature representation at each pixel from which
the label likelihoods in (d) are estimated. These likelihoods can be seen to map well to the actual structure in the scene.

with the number of histogram bins k and the placement of
the bin boundaries and empirically derived the 3 most dis-
criminative feature components (bins in this case). Feature
vectors along these three most discriminative components
for all the labeled patches {r,} are shown in Fig. 2, with
different colors denoting different ground truth labels. The
bin boundary values for these bins are given in Table 2. This
separation is not very surprising as it can be explained at an
intuitive level: (i) all buildings should at least have sup-
port in h,,;4; (i) all candidate objects should have a low
H,, and at least have support from A, (and some support
from hj; when under overhanging structures) and all over-
hanging structures should have a high H,, and at least have
support from hy; g5 and lack of support from hy,4q.

We perform kernel density estimation [11] on the
feature-space obtained above to compute the likelihood

densities, p(r|¢), for each of the four class labels (¢): tall
vertical structures (buildings), ground plane, candidate ob-
jects and overhanging structures.

1 &
p(r|l) = — ZKH(T —7Y) )
i=1

where r; are the feature vectors of all the patches ¢
in the training set belonging to the class ¢, Kpy(u)
oH)K(H~'/?u) is a kernel function and H is a band-
width matrix which scales the kernel support to be radi-
ally symmetric. In our implementation, we define K (u)
k(u " w) and use the following biweight kernel,

{

0<u<i1
u>1

(1—u)’
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Figure 4. Smoothness constraints in the MRF. In each subimage, we show the possible labels of each of the neighboring patches given the
label of the (colored) center patch. Note that the constraint is dependent on the position of the neighbor relative to the center patch. V =
Tall vertical structure, O = Overhanging structure, G = Ground, C = Candidate objects.

The biweight kernel is efficient to compute and we found
that it gave performance comparable to other more complex
kernels.

Fig. 3 shows the various steps of the likelihood density
estimation process for one frame. Note that, in particular,
the vertical structure likelihoods in Fig. 3(d) capture the vis-
ible extent of the buildings all the way to the base - some-
thing difficult to achieve with a simple heuristic on H.

4.3. Prior Probabilities

4.3.1 MRF Priors for Structure Classification

In addition to the likelihoods of structural labels, we model
the smoothness inherent in scene structures through Markov
Random Field (MRF) priors on a pairwise basis. The a pri-
ori joint probability of labels, P(L = ¢), is difficult to de-
fine in general but is tractable for MRFs. If L is represented
as an MREF, then the prior probability P(¢) is a Gibbs dis-
tribution [1] given by,

P(l) x e Ps0) (3)

where FEg(¢) is the cost associated with ¢ and is mod-
eled as a pairwise smoothness term between neighboring
patches. L can be formulated as an MRF on the grid-graph
represented by the patch-grid 11, with the 4-connectivity im-
posed by the grid structure defining the edges, if the fol-
lowing conditions are satisfied: (i) L is a random field,
and (ii) the label for a particular patch given those of all
other patches, depends only on the labels of its neighbor-
ing patches. These are reasonable assumptions in this sce-
nario. For example, the identification of a patch as a build-
ing patch might depend on whether its neighboring patches
are ground but has little to do with the identity of the patches
spatially far removed from it.

The next step is to define the smoothness cost Fg from
which the prior probability P(L = ¢) can be computed.

4.3.2 Smoothness Cost

We use the smoothness term to model valid configurations
of scene objects possible from the camera viewpoint. Thus,
for each patch, we will consider its neighboring patch and
define the cost of associating a pair of labels with the two
patches. The neighboring patch is defined as the patch
which is 4-connected to this patch and is also close in its
world depth Z*. Thus, we treat two patches which are

neighbors in the image space but distant in the world space
to have no conditional dependence on each other’s label-
ing in the MRF network. This condition essentially cuts
the grid-graph along depth discontinuities before the MRF
framework starts any label propagation. The remaining
neighbors are now depth neighbors as well and it is easier
to reason about what objects can (or cannot) be near what
objects.

Let p and ¢ be two neighboring patches from the patch-
grid and Z};” and Z;’ represent the world depths of these
patches. Define a binary variable p,, = 6(t) such that,

|1z, =2 |
1 =T <7,
o(t) = Zy
0 otherwise

for testing depth neighborhood using a ratio threshold Z,,.
Then the smoothness cost assigned to the patch pair (p, q)
is,

Es = pyppnD(p,q, L(p), L(q)),

where py, is the constant weight factor applied to the
smoothness term and is set empirically, L(p) and L(q) are
the labels of p and g and D(.) is a function that measures
the compatibility between those labels.

The function D(.) is defined by considering not only the
labels L(p) and L(g) (which is usual in typical BP formu-
lations) but also considering if patch p is a left, right, top or
bottom neighbor of patch ¢q. The function can enforce dif-
ferent costs for the same pair of labels (L(p), L(q)) if p is
below ¢ than if p is above q. For example, if p is a build-
ing patch and q is below p, then ¢ can be one of building,
candidate object or ground. However, if q is above p, then ¢
can only be a building patch since one cannot expect to see
either ground or candidate objects along the top edge of a
building. Note that in the first scenario, the candidate label
is included to allow (say) a pedestrian patch very close in
depth to the building patch to occlude the lower part of the
building. The allowed choices for L(g) would also be the
same as the first scenario if p and ¢ are horizontal neigh-
bors. The function D(.) is a binary function which imposes
a penalty 1 if a pair of labels is inconsistent and a penalty O
otherwise. The set of allowed labels for each patch pair is
presented in Fig. 4.

In our implementation, the MAP estimation (1) is done
with the max-product belief propagation algorithm [20].
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Table 2. Parameter settings for structure classification

. w h
Patch Grid T2 px 16 px
X7 Xres Zres hlou; hm,id hhi
Histogram 0.1m 0.Im 0-2m 2-4m 4-8m
Z n pbp
MRE 0.1 1.0
5. Experiments
B e e

Classification

Detector Detector

Figure 5. Evaluation system flow diagram

5.1. Data and Evaluation Methodology

Data. We experimentally validate our approach on the
public dataset available from [8]. This dataset consists of
four challenging test sequences (640 x 480 at 15Hz) of
busy shopping streets with multiple people moving in dif-
ferent directions, taken on different days and under different
weather conditions.

Evaluation Methodology. For evaluation, we use the
annotations available with the dataset. All the sequences
are completely annotated up to a distance of ~25m. The
exact subset of annotations used by Ess et al.[8] for evaluat-
ing their system is not available. Table 3 compares the sizes
of the annotation subsets used by us with [8]. The subset of
annotations we use includes pedestrians which: (i) are not
severely occluded by other pedestrians, (ii) are not signifi-
cantly clipped by the camera field-of-view, and (iii) are at
least 50 pixels high. For a detection to be counted as cor-
rect, it has to overlap with an annotation by more than 50%
using the intersection-over-union measure [9].

Parameter Settings. Table 2 lists all the parameter set-
tings used in our system.

5.2. Experimental Results

We evaluated the efficacy of structure-classification in
removing non-pedestrian image regions in this dataset. In
table 4, we present some figures on the average percent-
age area of the image rejected as non-candidate-pedestrian
region. On an average, we are able to reject more than
80% of the image area using structure classification itself.
This leaves less than 20% of the image area where potential
pedestrians may be present which, in fact, results in only
10-20 pedestrian ROIs which have to be classified by the
appearance-based classifier. This is a significant gain both
from system speed as well as performance standpoint.

The ROC curves for our system were obtained by vary-
ing the decision boundary threshold for the appearance-
based classifier stage in our pipeline. For the solid-red
curves the detections from the stereo-based detector were
directly fed to the appearance-based classifier (dotted-red
path in Fig. 5). For the solid-blue curves (solid-blue path

Table 3. Evaluation data used for our experiments

Sequence #Frames Annotations used
Name Essetal.[8] | Us
Seq00 499 1578 1581
Seq01 1000 5193 5207
Seq02 451 2359 1731
Seq03 354 1828 1724

Table 4. Pixel area removed by structure classification
Seq00 Seq01 Seq02 Seq03
88.00% | 82.25% | 85.13% | 76.00%

in Fig. 5), the detection ROIs were first validated by the
structure-classification (SC) module and any ROIs with
more than 75% non-candidate label patches (from amongst
all labeled patches within the ROI) were removed. The re-
maining boxes were then fed to the appearance-based clas-
sifier as before. In this evaluation methodology, any perfor-
mance gain with the use of the SC module clearly indicates
that the ROIs removed by SC were in fact difficult examples
for the appearance classifier.

To validate our implementation of the appearance-based
classifier on this dataset, we ran the publicly available
HoG pedestrian detector code from Dalal and Triggs [4] on
Seq01. The ROCs are shown in Fig. 8. The method is run
on all frames of SeqO1 considering only annotations bigger
than 100 pixels high as valid (giving a total of 2072 anno-
tations), since in their implementation the candidate boxes
are required to be of sizes close to or bigger than 64 x 128
pixels. The same annotations were used to evaluate our sys-
tem in this plot which shows that our classifier performs
equivalent to their implementation.

Fig. 6 compares the performance of our system individ-
ually on each of the test sequences with a few other ap-
proaches from the literature. The results from Ess et al. [8]
are included for Seq01, Seq02 and Seq03. They used Seq00
for training and no test results are available. For SeqOl,
they show an improvement in performance in [7] which is
also shown. In the other tests shown in the rest of the ROC
curves, pedestrian sizes vary tremendously. Output of our
baseline system (without SC, the red curve) can be assumed
to be similar to [4] if it is run on these sets. Notice the im-
provement in performance achieved by using the SC mod-
ule. In particular, we are able to remove a substantial num-
ber of FPs as we tend towards high detection rates.

The proposed method is implemented on an in-vehicle
pedestrian detection system. Our implementation takes
about 25ms per frame for stereo computation, template
pedestrian detection and structure classification on an In-
tel Dual-Core processor. The overall system including the
appearance classifier runs at about 10Hz.

Acknowledgments. The authors thank Ted Camus, Ben
Southall (Sarnoff), Wei Zhang, Ann Do (FHWA) and John
Harding and Jennifer Percer (NHTSA) for helpful discus-
sions and feedback.
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Figure 6. ROC curves showing our system performance on the four sequences Seq00-03. Also shown are comparisons with other repre-
sentative approaches from the literature: Ess! [8], Ess2 [7], Dalal [4].
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Figure 8. ROC curve comparing our system performance on Seq01
with Dalal and Triggs [4] for pedestrians > 100 pixels high.
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