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Abstract

This paper addresses the frame-to-frame data associ-

ation and state estimation problems in localization of a

pedestrian relative to a moving vehicle from a monocular

far infra-red video sequence. Using a novel application

of the hierarchical model-based motion estimation frame-

work, we are able to use the image appearance informa-

tion to solve the frame-to-frame data association problem

and estimate a sub-pixel accurate height ratio for a pedes-

trian in two frames. Then, to localize the pedestrian, we

propose a novel approach of using the pedestrian height

ratio estimates to guide an interacting multiple-hypothesis-

mode/height filtering algorithm instead of using a constant

pedestrian height model. Experiments on several IR se-

quences demonstrate that this approach achieves results

comparable to those from a known pedestrian height thus

avoiding errors from a constant height model based ap-

proach.

1. Introduction

In recent years, there has been an increased use of

visual sensors in automotive safety and convenience ap-

plications. One important safety application is to detect

pedestrians[17] at night time. Visible-range cameras do

not provide sufficient contrast to detect pedestrians well -

a problem which is well handled by near and far infra-red

(NIR,FIR) cameras. FIR cameras carry the advantage of

target heat sensitivity without the need for active ambient

illumination. The images of vehicles, pedestrians and ani-

mals are significantly enhanced and are clearly visible under

otherwise poor visibility conditions. Accurately estimating

the 3D location of the pedestrian relative to the moving ve-

hicle is important for accurate warnings. This is a chal-

lenging problem as the system has to rely on the temporal

tracking to estimate the location - both frame-to-frame data

association as well as state-estimation filtering become im-

portant. In this paper, we will focus on the data-association

and state-estimation aspects.

In FIR imagery, the appearance of a pedestrian does not

change much from frame-to-frame and it becomes possible

to match a pedestrian across time. This temporal image-

based matching approach helps the tracker by a) reducing

the state-space and hence the complexity of the filter re-

quired by not requiring an appearance model to be main-

tained by the filter, b) providing an alternate more robust

means for data-association in case of missed-detections and

c) explicitly estimating a sub-pixel object size ratio (which

we call scale) in the image between two frames. In this

paper, we describe an application of the hierarchical model-

based motion estimation paradigm of [4] to match pedes-

trian appearance over time without explicitly modeling the

pedestrian shape. The appearance matching is used, first,

to resolve the frame-to-frame association of the detections

and then, to estimate the scale across time which allows

a multiple-hypothesis-mode filtering algorithm to be em-

ployed for the state estimate phase.

To obtain a more accurate 3D localization, instead of us-

ing a constant H (one mode) for all pedestrians, this pa-

per presents a multiple-hypothesis-mode filtering algorithm

where each mode assumes a potential discrete height value

for the pedestrian and runs as a separate filter. The proba-

bility of each filter is obtained by evaluating the likelihood

value of an estimated pedestrian scale relative to the mea-

sured scale from the appearance matcher. The final pedes-

trian location can be obtained either by combining the mode

estimations together or just choosing the one with the high-

est likelihood value.

Related Work. Gandhi et al.[8] have given a compre-

hensive survey of recent research on pedestrian collision

avoidance systems. The paper reviews various approaches
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based on cues such as shape, motion, and stereo used for de-

tecting pedestrians from visible as well as non-visible light

sensors. Most of the approaches use image information for

single-frame detection but not for associating these detec-

tions across frames. In [9], a Chamfer based coarse-to-fine

strategy is applied to detect pedestrian candidates matching

a predefined set of templates. However, the contour match-

ing is not used for data-association between frames. Some

amount of work has been done on tracking deformable ob-

jects in high-dimensional spaces using complex parameter-

ized models of appearance and motion (e.g. [3]). These

methods try to use filtering both for computing the object

state as well as for refining the appearance model. This puts

too much computational burden on the filter and does not

use the appearance information directly across time.

Once the pedestrian bounding boxes are detected and

temporal associations established, a tracking process esti-

mates the locations and velocities of pedestrians either in

image space or in host vehicle referenced 3D world co-

ordinate system. Depending on the system and observa-

tion modeling approaches, the tracking algorithms could be

Kalman filtering for linear systems [5, 18], particle filtering

[16, 1, 10, 15] and unscented Kalman filtering [13] for non-

linear systems, or adaptive interacting multiple models [6].

The localization process can project a ROI measurement to

a 3D world frame by using the camera calibration informa-

tion. In this process, most researchers assume the height of

the pedestrian (H) is constant (e.g. H = 1.65±0.1m in [5]

and H = 1.8m in [1]). However, the projected 3D distance

error can be significant because the difference between an

assumed height and the real height can be as large as ±0.5

m.

In brief, the main contribution of this paper is the novel

combination of using an object size ratio computed from

image appearance information to guide a multi-hypothesis

mode filtering algorithm for accurate pedestrian localiza-

tion. The image appearance information is exploited using

the hierarchical model-based motion estimation framework.

We also show how the appearance matching in this frame-

work can be used for temporal data association.

The rest of the paper is organized as follows. Section 2

presents an overview of our system, and section 3 describes

the data-association and appearance matching approaches.

Pedestrian Tracking using single and multiple-hypothesis-

mode filters is described in section 4. Experimental results

are briefed in section 5, and conclusions are drawn in sec-

tion 6.

Figure 1. An overview of the system.

2. Overview

Figure 1 presents an overview of our system. The inputs

to the system are an FIR video stream and the vehicle speed

and yaw rate measurements from the vehicle CAN bus.

The pedestrian detection module detects candidate pedes-

trian ROIs in each frame and feeds them to the appear-

ance matching module. This module takes in the current

frame detections and the track predictions from the state-

estimation filter and establishes appearance match based

frame-to-frame associations. For each pedestrian ROI, it

outputs the feet and head locations (from the ROI), and a

scale estimate between the current and reference frames.

The ego-motion module [11] computes a pitch rate estimate

using the image data. The camera passed distance filter

uses the vehicle speed and yaw-rate measurements to es-

timate the distance the vehicle has traveled since the last

frame. Finally, a multi-mode-hypothesis filter combines the

pitch estimate, the vehicle passed distance estimate, the ROI

feet and head locations and the scale estimates to compute

the 3D location of the pedestrian relative to the camera and

its velocity in the inertial frame.

3. Data Association and Appearance Matching

In this paper, we will focus on the data-association and

tracking aspects and assume that a separate pedestrian de-

tector module is available. In our system, we follow the

initial pedestrian detection approach in [12] by first select-

ing interesting regions by scanning for hot-spots in the im-

age. The interesting regions found by the hot-spot detec-

tor provide seeds to an energy minimization based pedes-

trian model fitting algorithm which detects pedestrian as-

pect ROIs as initial detections. Thereafter, a multi-stage

classifier is used to prune the initial detection set to give a

set of candidates for tracking in successive frames.

3.1. Data Association

Once a set of detections is available, a data-association

step tries to associate new detections with any existing
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Figure 2. Example of data association by appearance matching for

a sequence from the Terravic Motion IR Database[14]. The first

row shows the original sequence with pedestrians labeled. The

second and third rows show four different data-association config-

urations between the first and the fifth frames. For each configura-

tion, we compute an image difference directly (third row) and after

appearance matching the top part of the pedestrians (second row).

The top-half of the error images show how the appearance match-

ing makes it more robust to compare valid (A4-A0,B4-B0) and

invalid (A4-B0,B4-A0) configurations by eliminating differences

arising out of small scale changes even for valid configurations.

tracks. New tracks are started for detections never seen

before and older tracks are terminated if no detections are

seen for them contiguously for a few frames. For each ex-

isting track, an expected detection location is computed for

this frame by projecting the world location predicted by the

state-estimation filter (described in section 4). An ROI over-

lap criterion is used to decide whether a new detection might

possibly belong to this track. For all the detections that pass

the overlap criterion, an image based appearance matching

test is conducted between the ROI in the last frame and

the candidates in this frame to decide the best matching

candidate. The appearance matching test outputs a con-

fidence measure which is used to decide the best match-

ing candidate as well as to infer if there is a mis-detection.

This helps with data-association in cluttered environments

where pedestrians occlude each other (thus leading to a mis-

detection) by avoiding association of pedestrians which are

dissimilar in appearance but close in world locations. An

example is shown in Fig.2.

The matching step also estimates a parametric transfor-

mation between the two detections which provides a scale

estimate to the state-estimation filter. In case the match-

ing step outputs a high confidence, the parametric transfor-

mation is also used to warp the tracked ROI to the current

frame. This warped ROI is then used as the new measure-

ment for this frame instead of the output from the single-

frame detector. This reduces the dependence on the ROI de-

tected by the single-frame detector which is typically very

noisy.

3.2. Appearance Matching

Our appearance matching and scale-estimation algo-

rithm is based on the hierarchical model-based motion es-

timation framework of [4]. Since detection of stable fea-

tures over time is difficult in FIR imagery, it is ideal to use

a dense direct-estimation framework like [4] to compute an

appropriate motion model between frames. For this prob-

lem, we estimate a reduced affine motion model (transla-

tion + isotropic scaling). This is because the local depth

variation of the pedestrian is very small relative to its dis-

tance from the camera and thus, an affine motion-model is

sufficient. Also, in the cases where the host-vehicle is di-

rectly approaching a pedestrian, there is sufficient change

in the pedestrian size that a simple correlation based match-

ing scheme (i.e. translation only model) would not work.

The appearance matching and scale estimation scheme is

presented in Fig.3. The detected ROI in the last frame (time

t − 1) is expanded by an amount dependent on the vehicle

speed (typically 10% of the previous ROI size) and image

pixels within this ROI serve as the reference image. Each

ROI candidate close to the filter prediction in the image at

time t is termed as the inspection image. The goal of the

matching algorithm is to search for a transformation that

relates the inspection image to the reference image. Once

the transformation is estimated, the ROI detected at time

t −1 is warped using this transformation to compute a ROI

at time t which is used as the measurement to the state-

estimation filter.

The direct-estimation method is applied in a coarse-to-

fine manner on the laplacian image pyramids computed

from the reference and inspection images. In this coarse-

to-fine estimation framework, motion models with a lower

number of parameters are estimated using images at coarser

level and then used to seed estimation of more complex

models using images at finer levels. This speeds up the

estimation while also avoiding getting stuck in local min-

ima. The number of pyramid levels is adaptively chosen to

ensure that the smallest pyramid level is bigger than a min-

imum size.

Fig.4 illustrates this coarse-to-fine approach for register-

ing two pedestrian ROIs detected at different times. L0, L1

and L2 are the successive levels of the laplacian pyramid

computed as in [7]. Ix and Iy are the image gradients com-

puted at each level of the reference image pyramid and It is

the difference between the laplacian images at correspond-

ing levels of the reference and inspection pyramids. Note
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Figure 3. Illustration of the appearance matching process to re-

cover ROI at time t and scale change between t −1 and t.

Figure 4. Illustration of the direct coarse-to-fine motion estimation

process between two sample pedestrian ROIs.

that the gradient maps have been contrast stretched for ease

of visualization. A translation only (T = (tx,ty)) motion

model is first estimated between images at level L2. The

images at level L1 are warped using the motion estimated

at L2 and then a translation and scale (T +S) motion model

is estimated between the warped images. Similar process is

repeated for L0 where the final motion is computed. Note

that at each level the image It depicts the amount of residual

motion between the images at that level before the motion

estimation step. It is clear that the coarse-to-fine strategy

successively reduces the registration error between the can-

didate images thus progressing towards a finer motion esti-

mate from level L2 to L0. The final residual gives a measure

of the confidence in the computed transformation which is

used by the data-association step.

Note that it is very important to get an accurate subpixel

scale estimate for our problem and our registration strat-

egy manages to achieve that quite well. The parameter val-

ues are estimated with an accuracy of 0.1 of a pixel. To

keep the estimation errors from accumulating, in practice,

the separation between the reference and the current frames

is chosen adaptively.

Reference frame selection. Experiments with the ap-

pearance matching algorithm indicate that the estimated

scale is most accurate when the actual scale is within a range

of [slo,shi]. This range was empirically determined to be

[1.02,1.04]. Thus, to ensure that we operate in this range of

scales, we adaptivly determine the separation k which will

be used in the next frame using the scale estimated in the

current frame. If the scale estimated in the current frame

st (using a frame separation kt) does not belong in the re-

quired range, we search for a separation kt+1 which will

bring the estimated scale in the next frame in the required

range i.e. we estimate the value kt+1 ∈ [1,kmax] such that

s

kt+1
kt

t ∈ [slo,shi]. The maximum separation kmax is depen-

dent on the minimum scale that we need to estimate. In our

experiments, we kept it at 5 frames. To achieve dynamic

selection of a reference frame, a buffer of last kmax image

frames is maintained along with an ROI list of the detec-

tions in each of those frames.

The appearance matching algorithm outlined above may

fail in the special case where the pedestrian is moving lat-

erally across the field-of-view due to significant leg motion.

Thus, in our system, in general we estimate the transforma-

tion for the top and bottom halves of the ROI separately

and then either output just the parameters from the top-

half or re-estimate them for the whole ROI depending on

whether the two sets of parameters are close (thus implying

that the legs are in fact following the same motion parame-

ters). Fig.5 shows an example of this registration scheme in

action for a pedestrian moving laterally as well as longitu-

dinally across the field-of-view leading to significant scale

change together with significant leg motion. We have seen

a significant improvement in the lateral velocity estimation

of pedestrians with the use of appearance matching. This is

because it is difficult for a single-frame detector to output

reliable bounding boxes around a pedestrian moving later-

ally while the appearance matcher estimates a much more

accurate sub-pixel bounding box estimate by using infor-

mation from the upper body.

Fig.9 shows an example of how the scale estimated from

the appearance matching method is smoother compared to

that estimated by just taking ratios of ROI heights in suc-

cessive frames (height-ratio method). The zig-zag nature

of the plot can be attributed to the varying separation be-

tween the current and the reference frames. For this plot,

the scale range has been constrained to a range different

from [1.02,1.04].

4. Pedestrian Tracking

Once the pedestrian bounding boxes in the image space

are detected and temporal associations established, a track-
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Figure 5. Example of appearance matching for a difficult sequence

from the Terravic Motion IR Database[14]. Every 10th frame from

the original sequence (top row) and the corresponding frames reg-

istered to the first frame (bottom row). The green line shows how

well the scales of all the frames match the first frame after registra-

tion. Note how the registration can robustly handle scale change,

motion in the legs and even a slight rotation of the person’s head.

ing process estimates the locations and velocities of pedes-

trians in a host vehicle referenced 3D world coordinate sys-

tem by using the camera calibration information. In this

process, most researchers assume the height of the pedes-

trian (H) is constant (e.g. H = 1.65 ± 0.1m in [5] and

H = 1.8m in [1]). However, the projected 3D distance er-

ror can be significant because the difference between an as-

sumed height and the real height can be as large as ±0.5

m.

To obtain a more accurate 3D localization, instead of us-

ing a constant H (one mode) for all pedestrians, we will

use a multiple-hypothesis-mode filtering algorithm where

each mode assumes a potential discrete height value for

the pedestrian. Assuming that the pedestrian heights can

be quantized into N bins or modes, N filters run in paral-

lel as part of the filtering algorithm, and the probability of

each filter is obtained by evaluating the likelihood value of

an estimated pedestrian scale relative to the measured scale

obtained from the appearance matcher. The final pedes-

trian location can be estimated in the sense of an Interact-

ing Multi-Model (IMM) algorithm [2]. The following sub-

sections present single filter modeling, the mode likelihood

value evaluation and the implementation of the IMM algo-

rithm.

4.1. Single Mode Filter

In the single mode filter, we assume the height of the

pedestrian is known. As shown in Fig. 6, under the ground

plane assumption, suppose a pedestrian is located at (X ,Y )

in a vehicle fixed coordinate system with a walking velocity

of (vx,vy) in the inertial coordinate system at time tk. The

system state is defined as

xk = [X ,Y,vx,vy,θ ]Tk , (1)

Figure 6. Left: a 3D view of the camera coordinate system used in

system modeling; Right: a bird-eye view of the system modeling

coordinates.

where θ is the pitch angle of the vehicle. Modeling the pitch

angle as part of the state is important to be able to localize

a pedestrian which is far away from the camera.

Assuming that the pedestrian moves with a nearly con-

stant velocity, its location in the camera reference frame

can be modeled by a rotation (governed by the vehicle yaw

angle change) and a translation (governed by the vehicle

movement which shifts the pedestrian relative to the rotated

frame). Similar to [13], from the geometric relationship

shown in Fig.6, the kinematics equation between two con-

secutive frames k and k + 1 can be written as

xk+1 = Axk + Buk + wk, (2)

where wk is the kinematics modeling uncertainty which is

assumed to be wk ∼ N(0,Qk) and the control input term,

uk = (vk, α̇k, θ̇k)
T , represents the speed, yaw and pitch rates

of the camera. The speed and yaw rate are obtained directly

from the vehicle CAN bus while the pitch rate is estimated

by an image based ego-motion estimation module [11]. Let

T = tk+1 − tk, α = α̇T , then the matrix A is expressed as,

A =





Rα T Rα O2×1

O2×2 Rα O2×1

O1×2 O1×2 1



 ,

where Rα = [cos(α),sin(α);−sin(α),cosα], and Om×n is

an m× n zero matrix. B is a 5× 3 matrix with B(1,1) =

−T cosα , B(2,1) = T sinα , B(5,3) = T , and all other ele-

ments zero.

The observation vector is defined as,

zk = [x f eet ,y f eet ,xhead ,yhead ]
T , (3)

where (x f eet ,y f eet ) and (xhead ,yhead) are the feet and head

locations of the pedestrian in the image. In addition, as-

suming the camera projection parameters to be known, we
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Figure 7. This schematic illustrates the variation of an object’s im-

age height h as the camera (with focal-length f ) moves a distance

of ∆k→l between frames k and l.

have the following non-linear measurement equations,

zk = h(xk)
△
=



























h1 = fpx
Y

X cos(θ)−Zc sin(θ) + Iw
2

+ n1,

h2 = fpy
X sin(θ)+Zc cos(θ)
X cos(θ)−Zc sin(θ) + Ih

2 + n2,

h3 = fpx
Y

X cos(θ)−(Zc−H)sin(θ) + Iw
2 + n3,

h4 = fpy
X sin(θ)+(Zc−H)cos(θ)
X cos(θ)−(Zc−H)sin(θ)

+ Ih
2

+ n4,

(4)

where H is the world-height of the pedestrian, Iw and Ih are

the width and height of the image respectively, fpx and fpy

are the horizontal and vertical focal lengths of the camera

respectively, Zc is the height of the camera from the ground

plane, and θ is the pitch angle of the camera relative to the

ground plane. nk = [n1,n2,n3,n4]
T
k is the observation noise

term which is also modeled as a zero mean Gaussian with

covariance Rk.

With the system and observation equations in (2) and (4),

the non-linear filtering algorithms can be applied to estimate

the state of the system from its observation history. Partic-

ularly, in this work we found the extended Kalman filter

(EKF) to be adequate.

4.2. Mode Likelihood Value Evaluation

To evaluate the likelihood value of a single mode filter

corresponding to a particular pedestrian height, we derive

the formula to estimate the scale of a pedestrian for a given

camera passed distance first. As shown in Fig. 7, let H be

the height of a pedestrian in the 3D world, Xk be his distance

from the camera (as defined in (1)), and hk be his height in

the image (in pixels) at frame k. Let ∆k→l denote the camera

passed distance from frames k to l (l > k). From hkXk = hlXl

one has,

sk→l
△
=

hl

hk

=
Xk

Xl

=
Xk

Xk −∆k→l

, (5)

where sk→l represents the scale of the pedestrian in the im-

age between frames k and l.

Equation (5) shows that the scale is determined by the

distance between the camera and the pedestrian at frame

k and the camera passed distance between frames k and l.

In addition, given the estimated camera to pedestrian dis-

tance and its variance pair (X̂k,σ
2
X̂k

), and the camera passed

distance and is variance pair(d̂k,σ
2
d̂k

), we can compute the

estimated scale and its variance as follows:

ŝk→l =
X̂k

X̂k −∆
,σ2

ŝ = c2
1σ

2
∆ + c2

2σ
2
X̂k

, (6)

where σ
2
∆

= σ
2
d̂k

+ σ
2
d̂l

, c1 = X̂k

(X̂k−∆)2 , c2 = − ∆

(X̂k−∆)2 , and

∆ = d̂l − d̂k.

Note that the scale estimated from (6) is implicitly de-

pendent on the height of the pedestrian hypothesized by the

single-mode filter. Let (sk→l ,σ
2
s ) be the actual scale and its

variance estimated by the appearance matching algorithm

(described in section 3.2). Then, the likelihood of this mode

can be represented as

Λk→l =
1√

2πσ
exp(− (ŝk→l − sk→l)

2

2σ2
), (7)

where σ
2 = σ

2
s + σ

2
ŝ .

4.3. Camera Passed Distance Estimation

The camera passed distance ∆k→l can be estimated by fil-

tering the speed and yaw rate data obtained from the vehicle

CAN bus. The state vector of the camera passed distance

filter is defined as:

xk = [d,v, α̇]Tk , (8)

where d, v, and α̇ are the camera passed distance, the vehi-

cle speed and the vehicle yaw rate, respectively. The kine-

matics equation of this filter can be modeled as:

dk+1 = dk + T cos(α̇kT )+ w1(k),

vk+1 = vk + w2(k),

α̇k+1 = α̇k + w3(k),

(9)

where wk = (w1,w2,w3)
T is the uncertainty term which is

assumed to be zero mean Gaussian with constant covari-

ance.

The measurement vector and its equation are respec-

tively defined as:

zk = (v, α̇)T
k ,and zk = Hkxk + nk, (10)

where Hk = (0 1 0; 0 0 1) and nk ∼ N(0,Rk) with Rk =

diag(σv(k),σα̇ (k)).

The camera-passed distance filter is implemented as an

EKF because of the nonlinearity of (9).
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Figure 8. The data flow of the IMM algorithm.

4.4. IMM Implementation

The multiple EKFs which correspond to multiple pedes-

trian height hypothesis are integrated under the IMM frame-

work (for implementtaion details, see chapter 3 in [2]). As-

suming there are N modes inside the IMM (Fig.8), the hy-

pothesis height of the ith mode is Hi, and the observed head

and feet locations in the image are (xhead ,yhead ,x f eet ,y f eet),

the initial state vector, x
(i)
0|0 of that mode is given by

X0 = Hi fpy/(y f eet − yhead),

Y0 = X0(x f eet −0.5Iw)/ fpx,

vx0
= vy0

= 0,

θ0 = atan2[− X(y f eet−0.5Ih)−Zc fpy

(y f eet−0.5Ih)Zc/ fpy−X
, fpy],

(11)

where Iw, Ih, fpx, fpy, and Zc are as in (4). The correspond-

ing covariance matrix can be set from the information of

the observation covariance, the Jacobian of (11) and inde-

pendent initial parameters for velocity elements. The initial

probability of each mode is set as uniformly distributed, i.e.

1/N.

Once the N filters are initialized, the interacting step

mixes the probabilities and states of all the modes based

on the mode transition parameters. By using the mixed re-

sults as inputs, the ith mode EKF is updated by the observa-

tion in the current frame, and the corresponding likelihood

value can be calculated by (7). After normalizing the up-

dated likelihood values, the final state at current time can

be estimated by combining the single mode estimates with

different probabilities.

5. Results

We collected seven sequences with known pedestrian

heights (1.66m, 1.70m, 1.86m and 1.92m) using a FIR sen-

sor mounted on the bumper of a vehicle. These sequences

Figure 9. The original observation data from sequence number 25.

Top: measured head and feet locations in the image; Bottom: mea-

sured scales by appearance matching and height ratio methods.

cover a wide variety of driving and pedestrian scenarios.

These include driving along straight roads as well as turns

with multiple pedestrians standing still (in front, to the left

and to the right of the vehicle), walking towards the vehicle,

or walking laterally across the vehicle path etc.

The images are captured at 30 Hz at a resolution of

324× 256 by a camera with horizontal and vertical focal-

lengths fpx = 498.5847 and fpy = 505.0273 respectively,

mounted on the front bumper of the car at a height of 0.65 m

above the ground. For the single mode EKF, the system co-

variance matrix is set as Q = diag(3.0864×10−7,3.0864×
10−7,0.00083333,0.00083333,0.01), its cross terms for

velocity are Q(3,1)=Q(1,3) = Q(4,2) = Q(2,4) = 1.3889×
10−5, and all the other elements are zero; the observation

covariance matrix is set as R = diag(5,5,5,5). For the

vehicle passed distance filter, its system uncertainty vari-

ances of speed and yaw rate are σ
2
s = 1(m2/s2), σ

θ̇
=

0.01(rad2/s2). The measurement covariance matrix is set

to R = diag(1,0.01).

Fig.9 displays the original measurements of the feet/head

locations of a pedestrian in the image and its scale between

the current frame and a reference frame for one sequence.

The foot/head locations are obtained from the detection and

appearance matching algorithms described in section 3. The

scales are computed by both appearance matching and the

height ratio features. Comparing with the height ratio fea-

ture, the appearance matching gives a more smooth result,

however it may fail whenever the appearance matching is

not reliable (e.g., in the frame range of [155,160] at the bot-

tom plot of Fig. 9). Hence, the scales from height ratio are

used by the filter whenever the confidence value from the

appearance matcher is low.

Fig.10 plots the estimated state vector from the IMM fil-
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Figure 10. A comparison of the elements of the state vector from

single mode EKFs and the IMM filter, where three of the single

mode filters use the heights used in the IMM and one uses the

ground truth height. This figure is best viewed in color.

ter and four single mode filters. The single mode filters in-

clude three from the modes used in the IMM, and one from

the mode with ground truth height (H = 1.92 m). It is clear

from these plots that the state estimated by the IMM filter

is very close to the estimate from a single mode filter with

known ground truth height. This was seen to be the case for

all sequences in our test dataset which has pedestrians with

several different ground-truth heights.

6. Conclusions

In summary, we have presented a novel application of

the hierarchical model-based motion estimation framework

to do temporal data-association, matching and scale estima-

tion from detected pedestrian ROIs in FIR image sequences.

The estimated scale allows us to use the multi-hypothesis-

mode filtering algorithm to more accurately estimate the lo-

cation of a pedestrian. Experiments demonstrate that this

allows location estimates very close to those obtained from

a known pedestrian height model.

We should point out that besides the noise characteristics

of the other observation data, the estimation errors of the

proposed method are highly dependent on the accuracy of

scale values measured from the appearance matching algo-

rithm and the CAN bus data quality. Future work will focus

on quantitatively evaluating the effect of these factors.
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