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Abstract- We present a novel LIDAR streaming architecture 
for real-time, on-board processing using unmanned robots. We 
propose a two-level 3D data structure that allows pipelined and 
streaming processing of the 3D data as it arrives from a moving 
robot: (i) at the coarse level, the incoming 3D scans are stored 
in memory in a dense 3D voxel grid with a relatively large 
voxel size - this ensures buffering of the most recent data and 
the availability of sufficient 3D measurements within a specific 
processing volume at the next level; (ii) at the fine level, we 
employ a data chunking mechanism guided by the movement 
of the robot and a rolling dense 3D voxel grid for processing the 
data in the immediate vicinity of the robot, which enables re
use of previously computed features. The architecture proposed 
requires a very small memory footprint, minimal data copying, 
and allows a fast spatial access for 3D data, even at the finest 
resolutions. We illustrate the proposed streaming architecture 
on a real-time 3D structure characterization task for detecting 
doors and stairs in indoor environments and show qualitative 
results demonstrating the effectiveness of our approach. 

I. INTRODUCTION 

The recent development of a vast variety of small and 
highly accurate laser sensors has greatly improved the ease 
with which 3D point clouds can be obtained, even from 
small robotic platforms. Unlike vision-based 3D sensing 
mechanisms using stereo, LIDAR is typically much more 
reliable for sensing depth, especially for untextured 3D 
regions and at a larger distance from the sensor. In the 
literature there have been presented numerous algorithms 
for using LIDAR for performing many tasks such as object 
detection [1], object recognition [2], [3], 3D modeling [4] 
and mapping. However, most often it was assumed that the 
data is first acquired over the whole area of interest and then 
processed off-line in a batch processing manner. There are 
numerous data structures which allows efficient spatial access 
to 3D neighbors and representation for point clouds based on 
k-D trees and octrees [5]. These structures however, require 
that the 3D distribution of points be known ahead of time 
for optimal space tessellation, thus they are not adequate for 
representing dynamic data acquired by a moving platform. 
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For numerous robotics tasks such as semantic mapping and 
navigation or obstacle detection, the data must be processed 
on-board the robot platform in real-time and with minimal 
latency. Many robotic platforms have limited processing 
resources (CPU, memory) due to space, weight and battery 
life. LIDAR sensors have very different acquisition speeds 
for the 3D environment, which leads to distinct processing 
requirements. For example, a Velodyne sensor can acquire 
1.3M points, while a Hokuyo can acquire about 20-40K 
points/sec. It is desirable that the architecture for LIDAR 
processing can be extended easily, with minimal changes, to 
different robotic platforms and LIDAR scanners. 

In this paper, we focus on the aspects of managing and 
processing a large volume of point data collected by a 
scanning LIDAR in a streaming and pipe-lined fashion: (i) 
at the coarse representation level, the incoming 3D scans 
are stored in memory in a dense 3D voxel grid with a 
relatively large voxel size, which ensures buffering of the 
data and availability of enough 3D measurements for a 
specific processing volume at the next level; (ii) at the fine 
level, we employ a chunking mechanism guided by the 
movement of the robot and a rolling dense 3D voxel grid for 
processing the data in the immediate vicinity of the robot, 
which enables re-use of previously computed features. The 
data structures require a very small memory footprint and 
data copying, and allow a fast spatial access for 3D data, 
even at fine resolution (e.g., Wcm. or less). 

A comprehensive analysis of various data structures for 
dynamic LIDAR processing has been done by Lalonde et 
al. [6]. The authors also describe a fast scrolling 3D dense 
grid to process the data in the immediate vicinity of the 
robot. Various strategies for reusing previously computed 
3D features (e.g., density, surface normal estimates) are also 
discussed. In our work we build upon the concepts in [6] 
and propose a novel two-level structure that provides similar 
benefits of fast spatial access, re-use of computation and 
minimal data copying between structures. Our framework is 
particularly well suited to our demonstration sensor setup 
where a single laser scans the environment perpendicular 
to the robot's motion direction. Without using an expensive 
pan-tilt unit or a dense scanning sensor like the Velodyne, 
we are able to use the (pose registered) scans from the 
single laser in a streaming manner and demonstrate effective 
structure characterization. This is significant if robots are 

978-1-61284-385-8/11/$26.00 ©2011 IEEE 1803 



to perform high-level tasks like object finding, in unknown 
environments, in live mode without having to process the 
over-dense point clouds typically obtained by expensive 
Velodyne like sensors. 

In this paper we illustrate the proposed streaming ar
chitecture in conjunction with a novel algorithm to detect 
two particular structure types commonly found in indoor 
environments - doors and stairs. The proposed algorithm 
makes full use of the chunking infrastructure to efficiently 
process incoming data without redundant re-computation and 
is able to detect these structures in real-time as the robot is 
traversing through the environment. Further, the algorithm 
can be easily generalized to detect other object categories 
by defining appropriate filters. In recent years, door and stair 
identification has been widely studied [7], [8], [9], [10], [11]. 
Each of these systems uses an image, tactile or 3D data
based approach to either detecting doors directly or their 
handles. Similarly, systems like [12], [13] use laser or vision 
sensors to detect stairs. The methods from [14] employ a 
single ID scan and a camera to learn walls and doors. 
However these methods don't need specifically to perform 
streaming processing and are not easily extendable to other 
3D structures which cannot be discriminated based solely on 
an ID scan (required for detection). 

The remainder of the paper is organized as follows. The 
streaming framework is described in Sec. II followed by a 
description of our algorithm for door and stair detection in 
Sec. III. Experiments and results are discussed in Sec. IV 
followed by concluding remarks in Sec. V. 

II.  THE STREAMING FRAMEWORK 

Although the streaming framework we present in this 
paper is generally applicable to a number of mobile robotics 
applications, we will sometimes use our specific application 
and hardware setup to decide on the system parameters. The 
aim is to semantically label all the doors and stairs in an 
indoor environment using a mobile robot (shown in Fig. 1) 
equipped with two laser sensors. The horizontal laser scans 
the environment in a horizontal plane and the coronal laser 
scans in a vertical plane perpendicular to the robot's direction 
of motion (for a more detailed description of the hardware, 
please refer to Sec. IV). As the robot moves, the coronal 
scans can be registered together in a single coordinate system 
to get a dense 3D representation of the environment which 
can be used to recognize the doors and stairs. However, we 
want to be able to perform the recognition task in a streaming 
manner as the robot scans each area. 

Most previous work on 3D object detection using dense 
3D point clouds has relied on either batch processing of this 
data (after alignment from individual scans) or on capturing 
dense data at each instant using a 360 degree scanning LI
DAR. In the following, we describe our streaming framework 
that allows live processing from such dense capture systems 
as well as from a single scan system by employing 3D grid
based data-structures for fast spatial access and by defining 
when it is safe to process a visited area. 

Fig. I. The Pioneer platform with the computing laptop and the scanning 
lasers. The coronally-scanning Hokuyo laser is mounted on the sensor mast, 
while the horizontally scanning unit is mounted at the front of the platform. 

Notation. We will use upper-case X, Y, Z to denote real
valued coordinates in a global world coordinate system. The 
axes XY of the coordinate system lie in the ground-plane 
and the Z axis points up from the ground. Lower-case i, j, k 
will be used to denote integral values - typically used as 
indices into a 3D grid structure. 

A. Point Storage 

We maintain the 3D point vectors in a single linear array P 

of pre-initialized length L. This array functions as a circular 
queue and allows access to the most recent L points captured 
by the robot. Throughout the architecture, this array is the 
only place where the points are kept in memory for access 
by any of the other layers. Depending on the application, the 
value for L can be computed as a function of the laser scan 
rate and the speed of the robot to determine the time-duration 
in which the robot can move and scan a sufficient distance. 
For our experiments, we buffered 3 minutes worth of points. 
Note that for our single scan laser setup, the robot needs 
to be continuously moving to ensure dense 3D scanning. 
Therefore, in our implementation, we use a laser scan only 
if the robot's position has changed (by a fixed delta) since 
the last time a scan was used. This ensures that the 3 minute 
buffering does not expire previous valid data due to a stuck 
robot. 

Any metadata associated with the points can also be 
maintained as separate arrays M1,' .. ,Mn parallel to this 
main array e.g. the point labels coming from a structure
characterization module. Specifically, we maintain an array 
Mo that stores a pointer into the voxel structure for each 
point. This array will be useful to implement efficient point 
deletion as will be described later. 

B. Static Voxel Array 

We maintain a coarse level static voxel structure for 
quick retrieval of points within specific spatial bounds by 
the streaming data processor. The basic architecture of this 
structure will be re-used for the streaming voxel structure 
described in the next section. 
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At the most basic level of our 3D data-structure is the 
VNode. Each VNode represents a single voxel (of specified 
dimensions) in 3D space and is responsible for the 3D points 
contained in that space. To reduce expensive point copy 
operations, the VNode itself does not store the 3D points. 
Instead, it maintains a linked-list of integer coordinates which 
index into the point array P. When a laser scan arrives, each 
point gets added to the point array P and its index in P 

gets pushed into the linked-list of the VNode responsible 
for its spatial location. The storage of the point index also 
allows easy voxel-Ievel access to any point metadata using 
the parallel metadata arrays Ml, ·· . , Mn. A pointer to the 
newly added linked-list node is stored in the array Mo at 
the index corresponding to the added point. Since the point 
array P is a circular queue, points get overwritten with 
new points and the old points need to be deleted from the 
VNodes containing them. This is accomplished in constant 
time by directly deleting the linked-list node pointed to by 
the corresponding entry of the array Mo. 

At the next layer above the VNode is the 3D grid structure 
VArray. This array is responsible for maintaining all the 
voxels within a specified spatial extent (Xm' Ym, Zm) -
(X M, Y M , Z M) at a specified discretization v. These two 
together determine the maximum number of VNodes Nx x 

Ny x Nz for which memory might be needed. Here Nx = 

(XM - Xm)/v is the number of grid cells along the X 
axis and likewise for Ny and Nz. The voxel array VArray 
is composed of a linked-list of VNodes and a 3-dimensional 
array of pointers VPtr to specific VNodes in this linked-list. 
Given a 3D location p = (X, Y, Z) within the spatial extent 
of the VArray, we can compute an integer index tuple (i, j, k) 
into the voxel grid structure using the equation below: 

j 

k 

l(X - Xm)/vj, 

l(Y - Ym)/vj , 

l(Z - Zm)/vj , 

(1) 

where (Xm, Ym, Zm) are spatial extent coordinates and v is 
the voxel size. 

Since the occupied space in any region of 3D spatial 
volume is usually sparse, we do not want to allocate VNodes 
for each voxel in the volume. Instead, we follow an on
demand allocation strategy for the VNodes. As each point 
is added, we compute its integer index tuple (i, j, k) and 
check if the associated VNode exists. If so, we push the 
point into the VNode as described earlier. If not, we allocate 
a new VNode, add it to the VNode list, assign its pointer to 
the pointer array, and finally push the point into the newly 
created VNode. 

The VArray allows very fast retrieval of points within 
any given spatial bounds. First, the spatial bounds are con
verted using (1) to a range of integer indices (il, jl, kl) to 
(i2' j2, k2). Then, the pointer array is traversed in the index 
range to find the list of VNodes within the range. Finally, 
the linked-lists of point indices from all the VNodes are 
appended together to get a master index list of the required 
points. The points themselves, as before, can be accessed by 

an 0(1) access from the point array P. 

The multiple pointers and levels-of-indirection used in the 
above implementation offers crucial performance benefits in 
the streaming voxel array SVArray implementation described 
in the next section. 

C. Streaming Voxel Array 

The static voxel array VArray is efficient in memory and 
point retrieval only when the voxel discretization v is coarse. 
To represent a large region of space, a finer discretization 
would result in a huge number of VNodes being allocated 
which would not fit in the memory and also be slow to 
access. For most applications, a coarsely sampled voxel grid 
would not suffice as any voxel level processing such as plane 
fitting etc. would be very inaccurate. This implies the need 
for a smaller voxel array responsible for a small region of 
space that can be discretized at a finer resolution. In addition, 
for a mobile robot, this region (and hence the voxel array) 
has to slide around in space so that the live processing can 
cover the entire map navigated by the robot. 

We propose a novel streaming voxel array SVArray that is 
responsible for keeping track of the 3D points in a fixed 
volume behind the robot. This data structure defines the 
volume of interest where the structure characterizer does 
its processing. We implement the rolling voxel array as a 
circular queue in two out of the three dimensions (there is 
no rolling in the vertical direction). This data structure avoids 
re-allocation of new memory as the robot moves and effec
tively reuses old data in the unrolled portion for structure 
characterization, hence avoiding unnecessary copying. 

Our streaming voxel array SVArray shares the basic ar
chitecture with the VArray but has the capability to slide 
in space. This means that the extent values (Xm' Ym, Zm) 
and (XM' YM, ZM) are variable and point to the region of 
space currently inside the SVArray in a global coordinate 
system. Exactly like the VArray, the SVArray is composed of 
a linked-list of VNodes and a 3-dimensional array of pointers 
VPtr to specific VNodes in this linked-list. Now assume that 
we need to slide a chunk to a neighboring location along 
one of the axes. We would maintain some overlap with 
the previous chunk to avoid border effects in the successive 
processing. In this overlap region, we want to reuse the voxel 
structure from the previous chunk and avoid any copying of 
points or voxel data. This is achieved by implementing the 
VPtr structure as a circular queue in the three dimensions. 
The key idea is to keep the VPtr structure intact in the overlap 
region and reuse the non-overlap region for storing new data. 

We maintain three additional dynamic indices im,jm, km 
which point to the voxel grid cell containing the smallest 
(X, Y, Z) coordinates. 

In this modified VArray i.e. the SVArray, the world coor
dinate (X, Y, Z) to grid index (i, j, k) conversion equations 
(1) need to be adapted as follows: 

j 

k 

(l(X - Xm)/vj + im) mod Nx, 

(l(Y - Ym)/vj + jm) mod Ny, 

(l(Z - Zm)/vj + km) mod Nz, 

(2) 
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Fig. 2. SVArray: Illustration of a roll along the X-axis by �x = 2v. 
The dark shaded cells depict filled voxels and they remain the same in 
the overlap region between the rolls. The light shaded cells depict the new 
region Rnew and the voxels in this region from the previous chunk have 
been invalidated. 

where (Xm, Ym, Zm) are the spatial extent coordinates, v 
is the voxel size and Nx, Ny, Nz are the number of cells 
along the X, Y ,  Z direction. In our system we have used 
v = O.l m. 

We maintain three additional arrays of VNode in
dices to efficiently manage the allocation and dealloca
tion of VNodes. These lists are called SliceX[O, ... , Nx], 
SliceY[O, ... , Ny] and SliceZ[O, ... , Nz] and their names 
refer to the fact that they essentially maintain an account 
of the VNodes allocated in a given "slice" of the voxel grid 
structure. For example, SliceX[io] is a list of all VNodes with 
indices in {(io,j, k)lj E {O, ... , Ny -I}, k E {O, ... , Nz -
I} }. Every time a new VNode is created, its index tuple 
(i,j, k) is pushed into the slices SliceX[i], SliceY[j] and 
SliceZ[k]. 

Let us now look at what is involved when the chunk 
contained in the current SVArray needs to move to a neigh
boring region (see Fig. 2). Suppose that the chunk moves 
from the region Rt = [(Xm, Ym, Zm), (XM, YM, ZM)] to 
RHi = [(Xm+�X, Ym, Zm), (XM+�X, YM, ZM)] which 
is a movement by �X only along the X-axis (we will show 
how to generalize this later). Assuming Xm + �X < XM, 
the new chunk position overlaps with the old position in the 
region Ro1ap = [(Xm + �X, Ym, Zm), (XM, YM, ZM )]. To 
go from Rt to Rt+l, we update the values of the dynamic 
indices as follows. For �X > 0, 

'Hi zm 
·t+i Jm 

kt+i m 

and for �X < 0, 

(i� + �X/v) mod Nx, 

j;" 
k;, 

(i� + �X/v + Nx) mod Nx, 

j;" 
k� 

(3) 

(4) 

Let the index range between the old i� and new i;;ti be 
L = {i�, ... , Nx -I, 0, ... , i;;ti_1} (and correspondingly 
L = {i;;ti, ... , Nx -l, O, . . .  ,i� -I} for �X < 0). 
Then, the VNodes in the index range i_ E L, j_ E 

{O, ... , Ny -I} and L E {O, ... , Nz -I} need to be 

invalidated to mark that the data there is old. This is precisely 
the set of VNodes pointed to by SliceX[L]. Thus, we can 
efficiently invalidate these VNodes by a single pass through 
these "X-Slices". A VNode invalidation clears its list of point 
indices and adds this VNode to a separate inventory (list) of 
pre-allocated VNodes. Whenever a new VNode is needed, 
this inventory is checked first and only then is an attempt 
made to allocate a new VNode. This reduces the overhead 
of VNode allocation at run-time and is particularly suited for 
SVArray as each roll invalidates and creates a large number 
of VNodes. 

The update equations for a roll along the Y or Z direction 
are symmetric to the above equations. The region Rnew = 

Rt+ 1 -Ro1ap is output as the coordinate range where new 
points are desired. Any general roll in the XY plane can 
be composed as a collection of rolls along the X and Y 
directions as we will discuss in the next section. To allow 
for a symmetric roll along the X and Y axes, we assume that, 
once initialized, the SVArray has a constant extent (XM -
Xm) and that it is the same along the X and Y dimensions 
i.e. (XM - Xm) = (YM - Ym). 

We enforce a constraint on the roll magnitude that �X < 

a * (XM - Xm) to ensure that at least a% of the voxel 
structure is re-used between rolls. Since there is always an 
overlap of voxel structure between successive rolls, we can 
compute the modulus operation in the above equations much 
more efficiently as follows: 

. d N 
{ i -Nx 

Z mo x = i 
if i >= Nx 
otherwise 

(5) 

and i is always ensured to be non-negative in all the 
previous equations. 

D. Data Chunking 

As the robot moves about scanning the environment 
around it, we need to identify the extents of the "chunk" 
of 3D space that is ready to be processed by the application. 
A chunk is ready when the entire volume inside it has 
been scanned by the robot at least once. Therefore, the 
strategy for chunk selection will be different depending on 
the positioning and setup of the laser sensors on the robot. 
Our streaming framework also puts additional constraints on 
the way a chunk can be selected due to the computed data 
re-use strategy we employ. In the following, we describe our 
chunking algorithm which is suitable for a coronal scanning 
laser setup (i.e. each scan from the laser is an arc in a plane 
perpendicular to the robot's direction of motion) and also 
satisfies the constraints from the streaming framework. 

The coronal laser setup constrains the way a chunk can 
be selected in a number of ways. First, the latest scan comes 
from the robot's current position so the chunk boundary 
cannot extend beyond this point (as that region potentially 
has not been scanned before). Second, the chunks being 
aligned to the global XY axes, the current orientation of the 
robot makes it difficult to choose the correct chunk boundary 
without causing border artifacts. Third, when the chunk is 
rolled it only requests new data in the region not-overlapping 
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(a) (b) 

Fig. 3. Data Chunking: (a) The robot's path is shown in red with pose 
markers at times tl, t2 and t3 shown as red dots. The orange arrows depict 
the coronal scanning laser. The depicted chunk can only be positioned here 
(the pose at time td when the robot has moved to at least the pose at time t3. 
This ensures that none of the coronal scans that might have contributed data 
to this chunk are missed. (b) A displacement from (Xl, Yl) to (X2, Y2) 
is divided into two rolls - an X-Roll from t to t + 1 and a Y-Roll from 
t + 1 to t + 2. 

with the previous chunk extent. This means that we cannot 
expect any data missing within the current chunk bounds to 
be filled in the next roll - the current chunk has to ensure that 
its boundaries do not extend into the to-be-scanned-in-future 
zones. 

We maintain a queue Q of potential future locations 
(X, Y )  for the chunk center. These locations are sampled 
from the path of the robot in a streaming manner. For each 
pose update from the robot, we first compute the Euclidean 
distances between this pose and the elements at the front 
Q � front and end Q � end of the queue as djront 

and dend, respectively. If the distance dend is greater than a 
threshold toiap, then the pose is pushed into the queue, else 
it is ignored. Thus, this threshold determines the sampling 
rate of chunks along the robot's path as well as the overlap 
between successive chunks. Similarly, if the distance djront 

is greater than another threshold tmin, then it is safe to move 
the chunk to the location Q � front. This is illustrated in 
Fig. 3(a). From the figure, it is clear that the threshold tmin 
should be set to the value tmin = (XM - Xm) * ..)2/2 to 
ensure that at the new chunk position, the entire extent of the 
chunk has been covered by the robot's path. This, in turn, 
always keeps the processing chunk trailing behind the robot 
as desired for our coronal sensor configuration. Note that 
this algorithm ensures that no chunks are generated when 
the robot is stationary or moving very slowly; for slower 
processing algorithms, this feature can be combined with 
the robot control loop to slow down the robot whenever the 
processing trails behind. 

Give the above procedure to generate locations for the 
chunk center position, let us now look at how we accomplish 
this move. Consider two successive pose markers (Xl, Yl, Z) 
and (X2' Y2, Z) where we assume that there is no change in 
the robot's altitude. The center of the chunk needs to be 
moved by the 2D displacement vector (X2 - Xl, Y2 - Yl). 
Since we allow only X and Y rolls for the chunk, this 
displacement can be divided into a series of X and Y rolls 
by a line rasterization algorithm like [15]. The sampling 
resolution for the rasterization grid is chosen depending on 
the fidelity requirement of the processed chunks w.r.t the 

Fig. 4. Chunking Example. The figure shows four positions of the chunk as 
the robot traverses a curved path around an office corridor. The bounding 
boxes are color coded in order of time: Red, Green, Blue, Yellow. The 
offsets show a roll in X from Green to Blue and rolls in Y in all other 
cases. Also shown are the composite point clouds with Red points marking 
detected doors and Blue points marking unlabeled structure. 

actual path of the robot. In our implementation, we found 
the coarsest sampling to be adequate i.e. the displacement is 
simply divided into just two rolls: first an X-Roll of (X2 -
Xd and then a Y-Roll of (Y2 - Yd as shown in Fig. 3(b). 
Fig. 4 shows a chunking (and structure characterization) 
example from one of our experimental runs. 

It is to be noted that one drawback of rolling w.r.t fixed 
global coordinate axes is that a diagonal path will be split 
into X and Y rolls even though it is more efficient to 
just slide along the local dominant direction. However, we 
have not seen this to have noticeable impact on our system 
performance in practice. 

E. Example Computational Blocks 

A basic but important piece of information available from 
dense 3D data is the ability to determine planar structures. 
These planes can be then be used for a number of applica
tions like structure characterization, object finding etc. In the 
next section, we will describe one such application where we 
find doors and stairs in indoor environments using a mobile 
robot. In the following, we briefly discuss two example low
level tasks that are computationally expensive but can be 
re-used between chunks. 

Plane Fitting. Plane estimation can be performed at the 
allocated VNodes (voxels) by computing the covariance 
matrix of all the points within a radius from each voxel 
centroid (computed as the average of points within the given 
voxel) and then using it to compute the local plane normal. 
However, it is necessary to perform the plane estimation at 
multiple radii in order to ensure robustness to registration 
noise and to outliers caused by nearby structures at surface 
discontinuities. This requires access to neighboring voxels 
inside the SVArray structure. 

3D Invariant Features. Objects can be recognized di
rectly from LIDAR using rotationally invariant 3D features 
such as spin-images or shape context [3]. These features 
typically require larger 3D scales compared with planar 
estimates. Therefore, voxel neighborhood access is important 
for this task as well. 

For both the examples above, neighbor access is an 
important capability. In the SVArray structure, this is eas-
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ily accomplished by using the index tuple (i, j, k) for a 
particular VNode in conjunction with the VPtr structure. 
We first compute the index tuple for the neighbor as say 
((i + 1) mod Nx,j, k), and then follow the VPtr link to the 
actual VNode. The actual voxel-level results from tasks like 
the above can be maintained as links from the corresponding 
VNodes. 

F. Chunk Transitioning 

The chunking mechanism ensures that there is a minimum 
overlap between successive chunk positions. As described in 
Sec. II-C, after the chunk rolls over to the new location, 
the chunk roll mechanism outputs the bounds of the un
processed region Rnew where new points need to be filled. 
We use these bounds to retrieve a supremum list of point 
indices in this region from the static voxel array VArray. 
These points are then pushed into the SVArray which rejects 
any points not in the correct bounds. Note that the list of 
points obtained from the VArray is a supremum because of 
its coarser resolution relative to the SVArray. Also note that 
no actual copying of points occurs in this process - only the 
index lists of points inside the VNodes are populated in the 
SVArray structure. 

Our streaming framework allows effective re-use of fitted 
planes and/or 3D features from one chunk to the next. The 
SVArray structure only allows processing for the newly filled 
voxels in the region Rnew. The processed planes and other 
features for the overlap region are re-used from the last 
chunk processing (since they are available by following a 
link from the corresponding VNodes). For applications like 
object detection, to avoid missing objects at the edges of 
a chunk, some parts of the computation still have to be 
carried out on the whole chunk each time but these steps 
are usually faster than the low-level tasks like plane fitting. 
As we describe in the application section, in our algorithm 
for door and stair finding, the matched filtering is such a task 
and it is performed very quickly on the entire chunk in each 
cycle. 

III. ApPLICATION: STRUCTURE CHARACTERIZATION 

In this section, we describe an application of the proposed 
streaming architecture for live processing of 3D data for de
tection of doors and stairs in the environment. The approach 
clearly outlines the general principles involved in designing 
an even more complex application using the architecture. 

In the following, we describe the door and stair detection 
algorithm as illustrated with an example in Fig. 5. The 
algorithm processes each SVArray chunk as follows: 

1) For each unprocessed voxel in the chunk under con
sideration: 

a) Fit a local 3D-plane using the method described 
in Sec.II-E. If the estimation matrix is badly 
conditioned, the voxel is marked as a non-planar 
voxel. 

b) For each planar voxel, use the estimated plane 
normal direction to decide if the voxel contains 

Combine 
Walland 

Roo< 
Responses 

Fig. 5. Door detection flowchart. The algorithm uses a matched filter on 
the shape of the projected vertical and horizontal structure defining a door. 

a locally planar horizontal surface or a vertical 
surface. 

2) Create a 2D grid in the ground-plane coordinate sys
tem to accumulate support from the scanned vertical 
structure. All voxels containing vertical surfaces are 
vertically projected to this 2D grid giving a vertical 

histogram representation. Each cell in this histogram 
measures how many voxels directly above this cell 
contain vertical surfaces. 

3) Repeat the above step for the scanned horizontal struc
ture to create horizontal histogram. 

4) Compute a Radon transform of the vertical histogram 
to estimate the direction of maximum variation in 
the histogram. Since most structure corresponds to 
wall like structures, the Radon transform will give 
distinct maximum along the wall direction. Use the 
computed direction to axis-align both the vertical and 
the horizontal histograms so that the doors are aligned 
with either the X or the Y direction. 

5) Apply object specific matched filters to the axis
aligned histograms and compute the filter responses. 

6) Combine the vertical and horizontal filter responses 
using an appropriate function. In our implementation, 
we use the geometric mean of the two as the overall 
response. 

7) Threshold the response to find the detection locations 
and perform non-maximal suppression to suppress 
spurious responses. Rotate the response map to the 
original orientation so that the detection location can 
be directly mapped to the voxels and hence the point
cloud. 

Step (I) above is the compute intensive step and happens 
only on the unprocessed voxels. The rest of the steps involve 
filtering and other image processing operations on a 2D grid 
which has a resolution of Nx x Ny (i.e. the SVArray). These 
steps are therefore very efficient. 
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Fig. 6. Matched Filters. Blue denotes positive filter weights and red denotes 
negative filter weights. The light blue location is the center of the filter where 
the evaluation result goes. 

A. Matched Filters 

The matched filters for door and stair detection are de
signed based on the intuition of what these structures look 
like in the scanned data. The filters are depicted in Fig. 6. 

For a door, we need to spot the presence of vertical 
structure with a door-sized gap in between and a scan of 
the floor in that gap. The floor scan verifies that the gap is 
traversable and is hence a door. The matched filter for the 
vertical (wall-response) histogram is thus the negative of a 
top-hat filter - the tails give positive weight to the presence of 
any wall-like structure while the center penalizes any wall
like structure. Similarly, the matched filter for the horizontal 
histogram is just a box-car filter which gives positive weight 
to the presence of a floor-scan which is at least the width of 
a door. The combination of the two matched filter responses 
thus evaluates if a door-width gap is present between vertical 
structures with a floor-scan in the gap. 

For stairs, the vertical and horizontal histogram pattern 
is much more distinct. The vertical histogram contains a 
grating-like structure corresponding to vertical surfaces sep
arated by horizontal structures. The horizontal histogram just 
provides evidence of the presence of a continuous horizontal 
structure. Thus, the matched filter for the vertical histogram 
is designed as a rectangular block with alternating rows 
containing positive and negative weights. We look for the 
presence of at least 5 steps in the matched filter to make the 
stair detection robust. The horizontal matched filter is again 
just a box-car filter. 

In this paper, we illustrated the filters for these two specific 
objects. However, the approach is general enough to be 
suitable for detecting other types of objects by design of 
an appropriate filter. 

IV. EXPERIMENTS 

A. Experimental Setup 

Our hardware platform is a Pioneer P3AT equipped with 
both computing (a Dell M6400 Quad-core laptop) and sensor 
payloads. As shown in Fig. 1, our sensor payload is com
prised of a number of laser, video and inertial sensors but 
we used only the laser sensors for all the experiments. These 
are the two Hokuyo UTM-30LX scanning laser rangefinders; 
one is mounted in horizontal position for 2D floor-plan style 
mapping. The second is mounted to scan in a coronal fashion, 
providing data in a vertical plane (in a 270 degree sector) 
normal to the robots direction of motion. 

In our live system, an on-board pose estimation module 
uses the horizontal scans and wheel odometry to estimate a 

X= m 
VArray -200.0 
SVArray 0.0 

v m 
VArray 0.5 
SVArray 0.1 

TABLE I 

PARAMETER SETTINGS 

XM m Y= m YM m 
200.0 -200.0 200.0 
8.0 -4.0 4.0 
Nx Ny Nz 
800 800 20 
80 80 1 5  

z= m ZM m 
-5.0 5 .0 
-0.05 1 .45 

a totapl m 

0.75 2.0 

Fig. 7. Example of detection of a door and a staircase. Red points mark 
the two sides of the detected door and green points mark the staircase. 
Unlabeled points are colored blue. The image is shown only for reference. 

global pose of the robot. The coronal scans are then trans
formed into the global coordinate system (using the estimated 
pose) and are presented to the streaming architecture for live 
processing by the structure characterization algorithm. The 
structure characterizer populates the metadata array Ml with 
the computed label for each point. 

B. Parameter Settings 

All the parameter settings used for the experiments are 
shown in Table-I. We buffered 3 minutes worth of points in 
the point array which amounts to a length of: 

L = 1080 points/scan x 40 scans/sec x 60 x 3 mins 

C. Results 

We extensively tested our system in different environments 
including a cluttered basement area with numerous doors 
and stairs. The robot was set in an autonomous exploration 
mode where it simultaneously mapped and characterized 
the environment with all the processing happening on the 
on-board computer. The characterization results from our 
system were delivered in real-time while the robot drove at 
approximately 0.3 mls. 

Fig. 7 shows an example of detection of a staircase 
and a doorway. Fig. 4 shows some door detection results 
around a turn in an office environment. Fig. 8 gives some 
more examples. The first row shows results for a clutter
free office corridor with the right image showing all the 
doors previously detected along the L-shaped corridor as 
white boxes along with the chunk currently being processed. 
The second and third rows demonstrate the robustness of 
our algorithm in a cluttered basement. In the picture with 
the door result, one can observe many (door-like) indented 
structures in the opposite wall that our system did not get 
fooled by. The clutter in this environment can be appreciated 
in the pictures in the third row - including a false-positive 
staircase picked up by our system on a stack of boxes. 
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Fig. 8. A few examples of detection of doors (in red) and stairs (in green). Unlabeled points within the current chunk are colored dark blue. The first row 
shows door detection in a typical office environment with the right image showing a trail of all the detected doors (white wireframes) around an L-shaped 
corridor. The second and third rows show the system robustness in a cluttered basement. The third row specifically shows the large amount of clutter in 
the environment as well as a stair-like structure picked up as a false-positive. This figure is best seen in color. 

V. CONCLUSION 

In this paper, we have outlined an architecture for stream
ing processing of LIDAR-data from a moving robot. We have 
demonstrated the effectiveness of the framework by a real 
structure characterization application that detects doors and 
stairs in live streaming mode. In future, we plan to extend 
the architecture into a multi-level rolling representation and 
also evaluate system performance for more difficult structure 
characterization problems. 
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