
2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

A LIDAR Streaming Architecture for Mobile Robotics with

Application to 3D Structure Characterization

Mayank Bansal, Bogdan Matei, Ben Southall, Jayan Eledath, Harpreet Sawhney

Vision Technologies, SRI International Sarnoff

201 Washington Road, Princeton, NJ 08540, USA

{mayank.bansal,bogdan.matei,ben.southall,jayan.eledath,harpreet.sawhney}@sri.com

Abstract- We present a novel LIDAR streaming architecture
for real-time, on-board processing using unmanned robots. We
propose a two-level 3D data structure that allows pipelined and
streaming processing of the 3D data as it arrives from a moving
robot: (i) at the coarse level, the incoming 3D scans are stored
in memory in a dense 3D voxel grid with a relatively large
voxel size - this ensures buffering of the most recent data and
the availability of sufficient 3D measurements within a specific
processing volume at the next level; (ii) at the fine level, we
employ a data chunking mechanism guided by the movement
of the robot and a rolling dense 3D voxel grid for processing the
data in the immediate vicinity of the robot, which enables re
use of previously computed features. The architecture proposed
requires a very small memory footprint, minimal data copying,
and allows a fast spatial access for 3D data, even at the finest
resolutions. We illustrate the proposed streaming architecture
on a real-time 3D structure characterization task for detecting
doors and stairs in indoor environments and show qualitative
results demonstrating the effectiveness of our approach.

I. INTRODUCTION

The recent development of a vast variety of small and
highly accurate laser sensors has greatly improved the ease
with which 3D point clouds can be obtained, even from
small robotic platforms. Unlike vision-based 3D sensing
mechanisms using stereo, LIDAR is typically much more
reliable for sensing depth, especially for untextured 3D
regions and at a larger distance from the sensor. In the
literature there have been presented numerous algorithms
for using LIDAR for performing many tasks such as object
detection [1], object recognition [2], [3], 3D modeling [4]
and mapping. However, most often it was assumed that the
data is first acquired over the whole area of interest and then
processed off-line in a batch processing manner. There are
numerous data structures which allows efficient spatial access
to 3D neighbors and representation for point clouds based on
k-D trees and octrees [5]. These structures however, require
that the 3D distribution of points be known ahead of time
for optimal space tessellation, thus they are not adequate for
representing dynamic data acquired by a moving platform.

This Project Agreement Holder effort was sponsored by the U.S. Gov
ernment under Other Transaction number WI5QKN-08-9-000l between the
Robotics Technology Consortium, Inc, and the Government. The U.S. Gov
ernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the U.S. Government.

For numerous robotics tasks such as semantic mapping and
navigation or obstacle detection, the data must be processed
on-board the robot platform in real-time and with minimal
latency. Many robotic platforms have limited processing
resources (CPU, memory) due to space, weight and battery
life. LIDAR sensors have very different acquisition speeds
for the 3D environment, which leads to distinct processing
requirements. For example, a Velodyne sensor can acquire
1.3M points, while a Hokuyo can acquire about 20-40K
points/sec. It is desirable that the architecture for LIDAR
processing can be extended easily, with minimal changes, to
different robotic platforms and LIDAR scanners.

In this paper, we focus on the aspects of managing and
processing a large volume of point data collected by a
scanning LIDAR in a streaming and pipe-lined fashion: (i)
at the coarse representation level, the incoming 3D scans
are stored in memory in a dense 3D voxel grid with a
relatively large voxel size, which ensures buffering of the
data and availability of enough 3D measurements for a
specific processing volume at the next level; (ii) at the fine
level, we employ a chunking mechanism guided by the
movement of the robot and a rolling dense 3D voxel grid for
processing the data in the immediate vicinity of the robot,
which enables re-use of previously computed features. The
data structures require a very small memory footprint and
data copying, and allow a fast spatial access for 3D data,
even at fine resolution (e.g., Wcm. or less).

A comprehensive analysis of various data structures for
dynamic LIDAR processing has been done by Lalonde et
al. [6]. The authors also describe a fast scrolling 3D dense
grid to process the data in the immediate vicinity of the
robot. Various strategies for reusing previously computed
3D features (e.g., density, surface normal estimates) are also
discussed. In our work we build upon the concepts in [6]
and propose a novel two-level structure that provides similar
benefits of fast spatial access, re-use of computation and
minimal data copying between structures. Our framework is
particularly well suited to our demonstration sensor setup
where a single laser scans the environment perpendicular
to the robot's motion direction. Without using an expensive
pan-tilt unit or a dense scanning sensor like the Velodyne,
we are able to use the (pose registered) scans from the
single laser in a streaming manner and demonstrate effective
structure characterization. This is significant if robots are

978-1-61284-385-8/11/$26.00 ©2011 IEEE 1803

to perform high-level tasks like object finding, in unknown
environments, in live mode without having to process the
over-dense point clouds typically obtained by expensive
Velodyne like sensors.

In this paper we illustrate the proposed streaming ar
chitecture in conjunction with a novel algorithm to detect
two particular structure types commonly found in indoor
environments - doors and stairs. The proposed algorithm
makes full use of the chunking infrastructure to efficiently
process incoming data without redundant re-computation and
is able to detect these structures in real-time as the robot is
traversing through the environment. Further, the algorithm
can be easily generalized to detect other object categories
by defining appropriate filters. In recent years, door and stair
identification has been widely studied [7], [8], [9], [10], [11].
Each of these systems uses an image, tactile or 3D data
based approach to either detecting doors directly or their
handles. Similarly, systems like [12], [13] use laser or vision
sensors to detect stairs. The methods from [14] employ a
single ID scan and a camera to learn walls and doors.
However these methods don't need specifically to perform
streaming processing and are not easily extendable to other
3D structures which cannot be discriminated based solely on
an ID scan (required for detection).

The remainder of the paper is organized as follows. The
streaming framework is described in Sec. II followed by a
description of our algorithm for door and stair detection in
Sec. III. Experiments and results are discussed in Sec. IV
followed by concluding remarks in Sec. V.

II. THE STREAMING FRAMEWORK

Although the streaming framework we present in this
paper is generally applicable to a number of mobile robotics
applications, we will sometimes use our specific application
and hardware setup to decide on the system parameters. The
aim is to semantically label all the doors and stairs in an
indoor environment using a mobile robot (shown in Fig. 1)
equipped with two laser sensors. The horizontal laser scans
the environment in a horizontal plane and the coronal laser
scans in a vertical plane perpendicular to the robot's direction
of motion (for a more detailed description of the hardware,
please refer to Sec. IV). As the robot moves, the coronal
scans can be registered together in a single coordinate system
to get a dense 3D representation of the environment which
can be used to recognize the doors and stairs. However, we
want to be able to perform the recognition task in a streaming
manner as the robot scans each area.

Most previous work on 3D object detection using dense
3D point clouds has relied on either batch processing of this
data (after alignment from individual scans) or on capturing
dense data at each instant using a 360 degree scanning LI
DAR. In the following, we describe our streaming framework
that allows live processing from such dense capture systems
as well as from a single scan system by employing 3D grid
based data-structures for fast spatial access and by defining
when it is safe to process a visited area.

Fig. I. The Pioneer platform with the computing laptop and the scanning
lasers. The coronally-scanning Hokuyo laser is mounted on the sensor mast,
while the horizontally scanning unit is mounted at the front of the platform.

Notation. We will use upper-case X, Y, Z to denote real
valued coordinates in a global world coordinate system. The
axes XY of the coordinate system lie in the ground-plane
and the Z axis points up from the ground. Lower-case i, j, k
will be used to denote integral values - typically used as
indices into a 3D grid structure.

A. Point Storage

We maintain the 3D point vectors in a single linear array P

of pre-initialized length L. This array functions as a circular
queue and allows access to the most recent L points captured
by the robot. Throughout the architecture, this array is the
only place where the points are kept in memory for access
by any of the other layers. Depending on the application, the
value for L can be computed as a function of the laser scan
rate and the speed of the robot to determine the time-duration
in which the robot can move and scan a sufficient distance.
For our experiments, we buffered 3 minutes worth of points.
Note that for our single scan laser setup, the robot needs
to be continuously moving to ensure dense 3D scanning.
Therefore, in our implementation, we use a laser scan only
if the robot's position has changed (by a fixed delta) since
the last time a scan was used. This ensures that the 3 minute
buffering does not expire previous valid data due to a stuck
robot.

Any metadata associated with the points can also be
maintained as separate arrays M1,' .. ,Mn parallel to this
main array e.g. the point labels coming from a structure
characterization module. Specifically, we maintain an array
Mo that stores a pointer into the voxel structure for each
point. This array will be useful to implement efficient point
deletion as will be described later.

B. Static Voxel Array

We maintain a coarse level static voxel structure for
quick retrieval of points within specific spatial bounds by
the streaming data processor. The basic architecture of this
structure will be re-used for the streaming voxel structure
described in the next section.

1804

At the most basic level of our 3D data-structure is the
VNode. Each VNode represents a single voxel (of specified
dimensions) in 3D space and is responsible for the 3D points
contained in that space. To reduce expensive point copy
operations, the VNode itself does not store the 3D points.
Instead, it maintains a linked-list of integer coordinates which
index into the point array P. When a laser scan arrives, each
point gets added to the point array P and its index in P

gets pushed into the linked-list of the VNode responsible
for its spatial location. The storage of the point index also
allows easy voxel-Ievel access to any point metadata using
the parallel metadata arrays Ml, ·· . , Mn. A pointer to the
newly added linked-list node is stored in the array Mo at
the index corresponding to the added point. Since the point
array P is a circular queue, points get overwritten with
new points and the old points need to be deleted from the
VNodes containing them. This is accomplished in constant
time by directly deleting the linked-list node pointed to by
the corresponding entry of the array Mo.

At the next layer above the VNode is the 3D grid structure
VArray. This array is responsible for maintaining all the
voxels within a specified spatial extent (Xm' Ym, Zm) -
(X M, Y M , Z M) at a specified discretization v. These two
together determine the maximum number of VNodes Nx x

Ny x Nz for which memory might be needed. Here Nx =

(XM - Xm)/v is the number of grid cells along the X
axis and likewise for Ny and Nz. The voxel array VArray
is composed of a linked-list of VNodes and a 3-dimensional
array of pointers VPtr to specific VNodes in this linked-list.
Given a 3D location p = (X, Y, Z) within the spatial extent
of the VArray, we can compute an integer index tuple (i, j, k)
into the voxel grid structure using the equation below:

j

k

l(X - Xm)/vj,

l(Y - Ym)/vj ,

l(Z - Zm)/vj ,

(1)

where (Xm, Ym, Zm) are spatial extent coordinates and v is
the voxel size.

Since the occupied space in any region of 3D spatial
volume is usually sparse, we do not want to allocate VNodes
for each voxel in the volume. Instead, we follow an on
demand allocation strategy for the VNodes. As each point
is added, we compute its integer index tuple (i, j, k) and
check if the associated VNode exists. If so, we push the
point into the VNode as described earlier. If not, we allocate
a new VNode, add it to the VNode list, assign its pointer to
the pointer array, and finally push the point into the newly
created VNode.

The VArray allows very fast retrieval of points within
any given spatial bounds. First, the spatial bounds are con
verted using (1) to a range of integer indices (il, jl, kl) to
(i2' j2, k2). Then, the pointer array is traversed in the index
range to find the list of VNodes within the range. Finally,
the linked-lists of point indices from all the VNodes are
appended together to get a master index list of the required
points. The points themselves, as before, can be accessed by

an 0(1) access from the point array P.

The multiple pointers and levels-of-indirection used in the
above implementation offers crucial performance benefits in
the streaming voxel array SVArray implementation described
in the next section.

C. Streaming Voxel Array

The static voxel array VArray is efficient in memory and
point retrieval only when the voxel discretization v is coarse.
To represent a large region of space, a finer discretization
would result in a huge number of VNodes being allocated
which would not fit in the memory and also be slow to
access. For most applications, a coarsely sampled voxel grid
would not suffice as any voxel level processing such as plane
fitting etc. would be very inaccurate. This implies the need
for a smaller voxel array responsible for a small region of
space that can be discretized at a finer resolution. In addition,
for a mobile robot, this region (and hence the voxel array)
has to slide around in space so that the live processing can
cover the entire map navigated by the robot.

We propose a novel streaming voxel array SVArray that is
responsible for keeping track of the 3D points in a fixed
volume behind the robot. This data structure defines the
volume of interest where the structure characterizer does
its processing. We implement the rolling voxel array as a
circular queue in two out of the three dimensions (there is
no rolling in the vertical direction). This data structure avoids
re-allocation of new memory as the robot moves and effec
tively reuses old data in the unrolled portion for structure
characterization, hence avoiding unnecessary copying.

Our streaming voxel array SVArray shares the basic ar
chitecture with the VArray but has the capability to slide
in space. This means that the extent values (Xm' Ym, Zm)
and (XM' YM, ZM) are variable and point to the region of
space currently inside the SVArray in a global coordinate
system. Exactly like the VArray, the SVArray is composed of
a linked-list of VNodes and a 3-dimensional array of pointers
VPtr to specific VNodes in this linked-list. Now assume that
we need to slide a chunk to a neighboring location along
one of the axes. We would maintain some overlap with
the previous chunk to avoid border effects in the successive
processing. In this overlap region, we want to reuse the voxel
structure from the previous chunk and avoid any copying of
points or voxel data. This is achieved by implementing the
VPtr structure as a circular queue in the three dimensions.
The key idea is to keep the VPtr structure intact in the overlap
region and reuse the non-overlap region for storing new data.

We maintain three additional dynamic indices im,jm, km
which point to the voxel grid cell containing the smallest
(X, Y, Z) coordinates.

In this modified VArray i.e. the SVArray, the world coor
dinate (X, Y, Z) to grid index (i, j, k) conversion equations
(1) need to be adapted as follows:

j

k

(l(X - Xm)/vj + im) mod Nx,

(l(Y - Ym)/vj + jm) mod Ny,

(l(Z - Zm)/vj + km) mod Nz,

(2)

1805

Fig. 2. SVArray: Illustration of a roll along the X-axis by �x = 2v.
The dark shaded cells depict filled voxels and they remain the same in
the overlap region between the rolls. The light shaded cells depict the new
region Rnew and the voxels in this region from the previous chunk have
been invalidated.

where (Xm, Ym, Zm) are the spatial extent coordinates, v
is the voxel size and Nx, Ny, Nz are the number of cells
along the X, Y , Z direction. In our system we have used
v = O.l m.

We maintain three additional arrays of VNode in
dices to efficiently manage the allocation and dealloca
tion of VNodes. These lists are called SliceX[O, ... , Nx],
SliceY[O, ... , Ny] and SliceZ[O, ... , Nz] and their names
refer to the fact that they essentially maintain an account
of the VNodes allocated in a given "slice" of the voxel grid
structure. For example, SliceX[io] is a list of all VNodes with
indices in {(io,j, k)lj E {O, ... , Ny -I}, k E {O, ... , Nz -
I} }. Every time a new VNode is created, its index tuple
(i,j, k) is pushed into the slices SliceX[i], SliceY[j] and
SliceZ[k].

Let us now look at what is involved when the chunk
contained in the current SVArray needs to move to a neigh
boring region (see Fig. 2). Suppose that the chunk moves
from the region Rt = [(Xm, Ym, Zm), (XM, YM, ZM)] to
RHi = [(Xm+�X, Ym, Zm), (XM+�X, YM, ZM)] which
is a movement by �X only along the X-axis (we will show
how to generalize this later). Assuming Xm + �X < XM,
the new chunk position overlaps with the old position in the
region Ro1ap = [(Xm + �X, Ym, Zm), (XM, YM, ZM)]. To
go from Rt to Rt+l, we update the values of the dynamic
indices as follows. For �X > 0,

'Hi zm
·t+i Jm

kt+i m

and for �X < 0,

(i� + �X/v) mod Nx,

j;"
k;,

(i� + �X/v + Nx) mod Nx,

j;"
k�

(3)

(4)

Let the index range between the old i� and new i;;ti be
L = {i�, ... , Nx -I, 0, ... , i;;ti_1} (and correspondingly
L = {i;;ti, ... , Nx -l, O, . . . ,i� -I} for �X < 0).
Then, the VNodes in the index range i_ E L, j_ E

{O, ... , Ny -I} and L E {O, ... , Nz -I} need to be

invalidated to mark that the data there is old. This is precisely
the set of VNodes pointed to by SliceX[L]. Thus, we can
efficiently invalidate these VNodes by a single pass through
these "X-Slices". A VNode invalidation clears its list of point
indices and adds this VNode to a separate inventory (list) of
pre-allocated VNodes. Whenever a new VNode is needed,
this inventory is checked first and only then is an attempt
made to allocate a new VNode. This reduces the overhead
of VNode allocation at run-time and is particularly suited for
SVArray as each roll invalidates and creates a large number
of VNodes.

The update equations for a roll along the Y or Z direction
are symmetric to the above equations. The region Rnew =

Rt+ 1 -Ro1ap is output as the coordinate range where new
points are desired. Any general roll in the XY plane can
be composed as a collection of rolls along the X and Y
directions as we will discuss in the next section. To allow
for a symmetric roll along the X and Y axes, we assume that,
once initialized, the SVArray has a constant extent (XM -
Xm) and that it is the same along the X and Y dimensions
i.e. (XM - Xm) = (YM - Ym).

We enforce a constraint on the roll magnitude that �X <

a * (XM - Xm) to ensure that at least a% of the voxel
structure is re-used between rolls. Since there is always an
overlap of voxel structure between successive rolls, we can
compute the modulus operation in the above equations much
more efficiently as follows:

. d N
{ i -Nx

Z mo x = i
if i >= Nx
otherwise

(5)

and i is always ensured to be non-negative in all the
previous equations.

D. Data Chunking

As the robot moves about scanning the environment
around it, we need to identify the extents of the "chunk"
of 3D space that is ready to be processed by the application.
A chunk is ready when the entire volume inside it has
been scanned by the robot at least once. Therefore, the
strategy for chunk selection will be different depending on
the positioning and setup of the laser sensors on the robot.
Our streaming framework also puts additional constraints on
the way a chunk can be selected due to the computed data
re-use strategy we employ. In the following, we describe our
chunking algorithm which is suitable for a coronal scanning
laser setup (i.e. each scan from the laser is an arc in a plane
perpendicular to the robot's direction of motion) and also
satisfies the constraints from the streaming framework.

The coronal laser setup constrains the way a chunk can
be selected in a number of ways. First, the latest scan comes
from the robot's current position so the chunk boundary
cannot extend beyond this point (as that region potentially
has not been scanned before). Second, the chunks being
aligned to the global XY axes, the current orientation of the
robot makes it difficult to choose the correct chunk boundary
without causing border artifacts. Third, when the chunk is
rolled it only requests new data in the region not-overlapping

1806

1<

(a) (b)

Fig. 3. Data Chunking: (a) The robot's path is shown in red with pose
markers at times tl, t2 and t3 shown as red dots. The orange arrows depict
the coronal scanning laser. The depicted chunk can only be positioned here
(the pose at time td when the robot has moved to at least the pose at time t3.
This ensures that none of the coronal scans that might have contributed data
to this chunk are missed. (b) A displacement from (Xl, Yl) to (X2, Y2)
is divided into two rolls - an X-Roll from t to t + 1 and a Y-Roll from
t + 1 to t + 2.

with the previous chunk extent. This means that we cannot
expect any data missing within the current chunk bounds to
be filled in the next roll - the current chunk has to ensure that
its boundaries do not extend into the to-be-scanned-in-future
zones.

We maintain a queue Q of potential future locations
(X, Y) for the chunk center. These locations are sampled
from the path of the robot in a streaming manner. For each
pose update from the robot, we first compute the Euclidean
distances between this pose and the elements at the front
Q � front and end Q � end of the queue as djront

and dend, respectively. If the distance dend is greater than a
threshold toiap, then the pose is pushed into the queue, else
it is ignored. Thus, this threshold determines the sampling
rate of chunks along the robot's path as well as the overlap
between successive chunks. Similarly, if the distance djront

is greater than another threshold tmin, then it is safe to move
the chunk to the location Q � front. This is illustrated in
Fig. 3(a). From the figure, it is clear that the threshold tmin
should be set to the value tmin = (XM - Xm) * ..)2/2 to
ensure that at the new chunk position, the entire extent of the
chunk has been covered by the robot's path. This, in turn,
always keeps the processing chunk trailing behind the robot
as desired for our coronal sensor configuration. Note that
this algorithm ensures that no chunks are generated when
the robot is stationary or moving very slowly; for slower
processing algorithms, this feature can be combined with
the robot control loop to slow down the robot whenever the
processing trails behind.

Give the above procedure to generate locations for the
chunk center position, let us now look at how we accomplish
this move. Consider two successive pose markers (Xl, Yl, Z)
and (X2' Y2, Z) where we assume that there is no change in
the robot's altitude. The center of the chunk needs to be
moved by the 2D displacement vector (X2 - Xl, Y2 - Yl).
Since we allow only X and Y rolls for the chunk, this
displacement can be divided into a series of X and Y rolls
by a line rasterization algorithm like [15]. The sampling
resolution for the rasterization grid is chosen depending on
the fidelity requirement of the processed chunks w.r.t the

Fig. 4. Chunking Example. The figure shows four positions of the chunk as
the robot traverses a curved path around an office corridor. The bounding
boxes are color coded in order of time: Red, Green, Blue, Yellow. The
offsets show a roll in X from Green to Blue and rolls in Y in all other
cases. Also shown are the composite point clouds with Red points marking
detected doors and Blue points marking unlabeled structure.

actual path of the robot. In our implementation, we found
the coarsest sampling to be adequate i.e. the displacement is
simply divided into just two rolls: first an X-Roll of (X2 -
Xd and then a Y-Roll of (Y2 - Yd as shown in Fig. 3(b).
Fig. 4 shows a chunking (and structure characterization)
example from one of our experimental runs.

It is to be noted that one drawback of rolling w.r.t fixed
global coordinate axes is that a diagonal path will be split
into X and Y rolls even though it is more efficient to
just slide along the local dominant direction. However, we
have not seen this to have noticeable impact on our system
performance in practice.

E. Example Computational Blocks

A basic but important piece of information available from
dense 3D data is the ability to determine planar structures.
These planes can be then be used for a number of applica
tions like structure characterization, object finding etc. In the
next section, we will describe one such application where we
find doors and stairs in indoor environments using a mobile
robot. In the following, we briefly discuss two example low
level tasks that are computationally expensive but can be
re-used between chunks.

Plane Fitting. Plane estimation can be performed at the
allocated VNodes (voxels) by computing the covariance
matrix of all the points within a radius from each voxel
centroid (computed as the average of points within the given
voxel) and then using it to compute the local plane normal.
However, it is necessary to perform the plane estimation at
multiple radii in order to ensure robustness to registration
noise and to outliers caused by nearby structures at surface
discontinuities. This requires access to neighboring voxels
inside the SVArray structure.

3D Invariant Features. Objects can be recognized di
rectly from LIDAR using rotationally invariant 3D features
such as spin-images or shape context [3]. These features
typically require larger 3D scales compared with planar
estimates. Therefore, voxel neighborhood access is important
for this task as well.

For both the examples above, neighbor access is an
important capability. In the SVArray structure, this is eas-

1807

ily accomplished by using the index tuple (i, j, k) for a
particular VNode in conjunction with the VPtr structure.
We first compute the index tuple for the neighbor as say
((i + 1) mod Nx,j, k), and then follow the VPtr link to the
actual VNode. The actual voxel-level results from tasks like
the above can be maintained as links from the corresponding
VNodes.

F. Chunk Transitioning

The chunking mechanism ensures that there is a minimum
overlap between successive chunk positions. As described in
Sec. II-C, after the chunk rolls over to the new location,
the chunk roll mechanism outputs the bounds of the un
processed region Rnew where new points need to be filled.
We use these bounds to retrieve a supremum list of point
indices in this region from the static voxel array VArray.
These points are then pushed into the SVArray which rejects
any points not in the correct bounds. Note that the list of
points obtained from the VArray is a supremum because of
its coarser resolution relative to the SVArray. Also note that
no actual copying of points occurs in this process - only the
index lists of points inside the VNodes are populated in the
SVArray structure.

Our streaming framework allows effective re-use of fitted
planes and/or 3D features from one chunk to the next. The
SVArray structure only allows processing for the newly filled
voxels in the region Rnew. The processed planes and other
features for the overlap region are re-used from the last
chunk processing (since they are available by following a
link from the corresponding VNodes). For applications like
object detection, to avoid missing objects at the edges of
a chunk, some parts of the computation still have to be
carried out on the whole chunk each time but these steps
are usually faster than the low-level tasks like plane fitting.
As we describe in the application section, in our algorithm
for door and stair finding, the matched filtering is such a task
and it is performed very quickly on the entire chunk in each
cycle.

III. ApPLICATION: STRUCTURE CHARACTERIZATION

In this section, we describe an application of the proposed
streaming architecture for live processing of 3D data for de
tection of doors and stairs in the environment. The approach
clearly outlines the general principles involved in designing
an even more complex application using the architecture.

In the following, we describe the door and stair detection
algorithm as illustrated with an example in Fig. 5. The
algorithm processes each SVArray chunk as follows:

1) For each unprocessed voxel in the chunk under con
sideration:

a) Fit a local 3D-plane using the method described
in Sec.II-E. If the estimation matrix is badly
conditioned, the voxel is marked as a non-planar
voxel.

b) For each planar voxel, use the estimated plane
normal direction to decide if the voxel contains

Combine
Walland

Roo<
Responses

Fig. 5. Door detection flowchart. The algorithm uses a matched filter on
the shape of the projected vertical and horizontal structure defining a door.

a locally planar horizontal surface or a vertical
surface.

2) Create a 2D grid in the ground-plane coordinate sys
tem to accumulate support from the scanned vertical
structure. All voxels containing vertical surfaces are
vertically projected to this 2D grid giving a vertical

histogram representation. Each cell in this histogram
measures how many voxels directly above this cell
contain vertical surfaces.

3) Repeat the above step for the scanned horizontal struc
ture to create horizontal histogram.

4) Compute a Radon transform of the vertical histogram
to estimate the direction of maximum variation in
the histogram. Since most structure corresponds to
wall like structures, the Radon transform will give
distinct maximum along the wall direction. Use the
computed direction to axis-align both the vertical and
the horizontal histograms so that the doors are aligned
with either the X or the Y direction.

5) Apply object specific matched filters to the axis
aligned histograms and compute the filter responses.

6) Combine the vertical and horizontal filter responses
using an appropriate function. In our implementation,
we use the geometric mean of the two as the overall
response.

7) Threshold the response to find the detection locations
and perform non-maximal suppression to suppress
spurious responses. Rotate the response map to the
original orientation so that the detection location can
be directly mapped to the voxels and hence the point
cloud.

Step (I) above is the compute intensive step and happens
only on the unprocessed voxels. The rest of the steps involve
filtering and other image processing operations on a 2D grid
which has a resolution of Nx x Ny (i.e. the SVArray). These
steps are therefore very efficient.

1808

Fig. 6. Matched Filters. Blue denotes positive filter weights and red denotes
negative filter weights. The light blue location is the center of the filter where
the evaluation result goes.

A. Matched Filters

The matched filters for door and stair detection are de
signed based on the intuition of what these structures look
like in the scanned data. The filters are depicted in Fig. 6.

For a door, we need to spot the presence of vertical
structure with a door-sized gap in between and a scan of
the floor in that gap. The floor scan verifies that the gap is
traversable and is hence a door. The matched filter for the
vertical (wall-response) histogram is thus the negative of a
top-hat filter - the tails give positive weight to the presence of
any wall-like structure while the center penalizes any wall
like structure. Similarly, the matched filter for the horizontal
histogram is just a box-car filter which gives positive weight
to the presence of a floor-scan which is at least the width of
a door. The combination of the two matched filter responses
thus evaluates if a door-width gap is present between vertical
structures with a floor-scan in the gap.

For stairs, the vertical and horizontal histogram pattern
is much more distinct. The vertical histogram contains a
grating-like structure corresponding to vertical surfaces sep
arated by horizontal structures. The horizontal histogram just
provides evidence of the presence of a continuous horizontal
structure. Thus, the matched filter for the vertical histogram
is designed as a rectangular block with alternating rows
containing positive and negative weights. We look for the
presence of at least 5 steps in the matched filter to make the
stair detection robust. The horizontal matched filter is again
just a box-car filter.

In this paper, we illustrated the filters for these two specific
objects. However, the approach is general enough to be
suitable for detecting other types of objects by design of
an appropriate filter.

IV. EXPERIMENTS

A. Experimental Setup

Our hardware platform is a Pioneer P3AT equipped with
both computing (a Dell M6400 Quad-core laptop) and sensor
payloads. As shown in Fig. 1, our sensor payload is com
prised of a number of laser, video and inertial sensors but
we used only the laser sensors for all the experiments. These
are the two Hokuyo UTM-30LX scanning laser rangefinders;
one is mounted in horizontal position for 2D floor-plan style
mapping. The second is mounted to scan in a coronal fashion,
providing data in a vertical plane (in a 270 degree sector)
normal to the robots direction of motion.

In our live system, an on-board pose estimation module
uses the horizontal scans and wheel odometry to estimate a

X= m
VArray -200.0
SVArray 0.0

v m
VArray 0.5
SVArray 0.1

TABLE I

PARAMETER SETTINGS

XM m Y= m YM m
200.0 -200.0 200.0
8.0 -4.0 4.0
Nx Ny Nz
800 800 20
80 80 1 5

z= m ZM m
-5.0 5 .0
-0.05 1 .45

a totapl m

0.75 2.0

Fig. 7. Example of detection of a door and a staircase. Red points mark
the two sides of the detected door and green points mark the staircase.
Unlabeled points are colored blue. The image is shown only for reference.

global pose of the robot. The coronal scans are then trans
formed into the global coordinate system (using the estimated
pose) and are presented to the streaming architecture for live
processing by the structure characterization algorithm. The
structure characterizer populates the metadata array Ml with
the computed label for each point.

B. Parameter Settings

All the parameter settings used for the experiments are
shown in Table-I. We buffered 3 minutes worth of points in
the point array which amounts to a length of:

L = 1080 points/scan x 40 scans/sec x 60 x 3 mins

C. Results

We extensively tested our system in different environments
including a cluttered basement area with numerous doors
and stairs. The robot was set in an autonomous exploration
mode where it simultaneously mapped and characterized
the environment with all the processing happening on the
on-board computer. The characterization results from our
system were delivered in real-time while the robot drove at
approximately 0.3 mls.

Fig. 7 shows an example of detection of a staircase
and a doorway. Fig. 4 shows some door detection results
around a turn in an office environment. Fig. 8 gives some
more examples. The first row shows results for a clutter
free office corridor with the right image showing all the
doors previously detected along the L-shaped corridor as
white boxes along with the chunk currently being processed.
The second and third rows demonstrate the robustness of
our algorithm in a cluttered basement. In the picture with
the door result, one can observe many (door-like) indented
structures in the opposite wall that our system did not get
fooled by. The clutter in this environment can be appreciated
in the pictures in the third row - including a false-positive
staircase picked up by our system on a stack of boxes.

1809

Fig. 8. A few examples of detection of doors (in red) and stairs (in green). Unlabeled points within the current chunk are colored dark blue. The first row
shows door detection in a typical office environment with the right image showing a trail of all the detected doors (white wireframes) around an L-shaped
corridor. The second and third rows show the system robustness in a cluttered basement. The third row specifically shows the large amount of clutter in
the environment as well as a stair-like structure picked up as a false-positive. This figure is best seen in color.

V. CONCLUSION

In this paper, we have outlined an architecture for stream
ing processing of LIDAR-data from a moving robot. We have
demonstrated the effectiveness of the framework by a real
structure characterization application that detects doors and
stairs in live streaming mode. In future, we plan to extend
the architecture into a multi-level rolling representation and
also evaluate system performance for more difficult structure
characterization problems.

REFERENCES

[I] L. Spinello, K. O. Arras, R. Triebel, and R. Siegwart, "A layered
approach to people detection in 3d range data," in 24-th AAAI
Conference on Artificial Intelligence, 2010.

[2] M. Eich, M. Dabrowska, and F. Kirchner, "Semantic labeling: Classifi
cation of 3d entities based on spatial feature descriptors," in Workshop
Best Practice in 3D Perception and Modeling for Mobile Manipulation
(ICRA-2010), 2010.

[3] B. Matei, Y. Shan, H. S. Sawhney, Y. Tan, R. Kumar, D. Huber, and
M. Hebert, "Rapid object indexing using locality sensitive hashing and
joint 3d-signature space estimation," PAMI, vol. 28, 2006.

[4] B. Matei, H. Sawhney, S. Samarasekera, J. Kim, and R. Kumar,
"Building segmentation for densely built urban regions using aerial
lidar data," in CVPR, 2008.

[5] H. Samet, Multidimensional and metric data structures. Morgan-
Kaufmann, 2006.

[6] J.-F. Lalonde, N. Vandapel, and M. Hebert, "Data structure for efficient
dynamic processing in 3-d," vol. 26, October 2007.

[7] E. Aude, E. Lopes, C. Aguiar, and M. Martins, "Door Crossing and
State Identification Using Robotic Vision," in 8th International IFAC
Symposium on Robot Control (Syroco 2006), Bologna, Italy, 2006.

[8] A. Jain and C. Kemp, "Behaviors for robust door opening and
doorway traversal with a force-sensing mobile manipulator," in RSS
Manipulation Workshop: Intelligence in Human Environments, 2008.

[9] E. Klingbeil, A. Saxena, and A. Ng, "Learning to open new doors," in
Robotics Science and Systems (RSS) workshop on Robot Manipulation,
2008.

[10] A. Jain and C. Kemp, "Behavior-based door opening with equilibrium
point control," in RSS Workshop: Mobile Manipulation in Human
Environments, 2009.

[11] R. Rusu, W. Meeussen, S. Chitta, and M. Beetz, "Laser-based
perception for door and handle identification," in Proceedings of
International Conference on Advanced Robotics, 2009.

[12] M. Fair and D. Miller, "Automated Staircase Detection, Alignment
& Traversal," in Proceedings of International Conference on Robotics
and Manufacturing. Citeseer, pp. 218-222.

[I3] S. Se and M. Brady, "Vision-based detection of staircases," in Proc.
Asian conf. computer vision. Citeseer, 2000, pp. 535-540.

[14] D. Anguelov, D. Koller, E. Parker, and S. Thrun, "Detecting and
modeling doors with mobile robots," in ICRA, 2004.

[IS] J. Bresenham, "Pixel-processing fundamentals," IEEE Computer
Graphics and Applications, vol. 16, no. I, pp. 74--82, 1996.

1810

