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Abstract— We present a real-time pedestrian detection system
based on structure and appearance classification. We discuss
several novel ideas that contribute to having low-false alarms
and high detection rates, while at the same time achieving
computational efficiency: (i) At the front end of our system
we employ stereo to detect pedestrians in 3D range maps
using template matching with a representative 3D shape model,
and to classify other background objects in the scene such as
buildings, trees and poles. The structure classification efficiently
labels substantial amount of non-relevant image regions and
guides the further computationally expensive process to focus
on relatively small image parts; (ii) We improve the appearance-
based classifiers based on HoG descriptors by performing
template matching with 2D human shape contour fragments
that results in improved localization and accuracy; (iii) We
build a suite of classifiers tuned to specific distance ranges for
optimized system performance. Our method is evaluated on
publicly available datasets and is shown to match or exceed
the performance of leading pedestrian detectors in terms of
accuracy as well as achieving real-time computation (10 Hz),
which makes it adequate for in-vehicle navigation platform.

I. INTRODUCTION

This paper describes a real time stereo-based pedestrian

detection system for autonomous robot navigation, which

achieves a low false alarm rate per frame at above 90% de-

tection accuracy. Cameras provide a passive and inexpensive

means of sensing for robotic platforms compared to systems

that employ active sensors such as radar or LIDAR. Using

stereo cameras for sensing gives a significant advantage

over monocular vision, because the scale of objects can

be estimated and there is no need to search of objects in

the scale space. In addition, the high resolution 3D depth

maps produced by stereo can be used to recognize 3D

structures such as ground plane, buildings and vegetation and

drastically prune out the location in an image that require

additional analysis using appearance classification.

Recent research on pedestrian detection has under-

scored the significant reduction in the false positives rates

(while achieving similar detection rates), when stereopsis is

used [1], [2]. These approaches used either sparse stereo

for the initial pedestrian detection, resulting in poor fore-

ground/background separation [1], or employed 3D structure

from motion to assist in constraining the 2D image based

pedestrian detections [2].
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Fig. 1. Overview of our stereo-based pedestrian detection system; Depth-
map from stereo, pedestrian boxes from stereo based pedestrian detector,
scene labeled by structure classifier and confirmed pedestrian from image
based classification.

In contrast, our system makes a more involved use of

dense 3D range maps. In order to balance the trade-offs

between computational complexity, low false alarms and

high detection accuracies, our system, briefly depicted in

Fig. 1, implements a number of novel techniques within a

layered architecture:(i) at the front-end we use the depth

maps to generate initial pedestrian detections using tem-

plate matching with a 3D human shape and to classify 3D

structure elements such as poles, buildings, vegetation to

efficiently guide focus of attention. For classification, we

learn individual classifiers for individual classes (e.g., trees,

poles, buildings) by computing 3D invariant features that

are combined within a Markov model framework to enforce

the 3D spatial relationships; (ii) Multiple appearance-based

pedestrian classifiers are trained separately for three depth

ranges to prune the detections generated by stereo. A com-

bination of template matching with 2D human shape contour

fragments for localization, along with the standard HoG

descriptors for appearance is effectively used to guide focus

of attention for computational efficiency while maintaining

accuracy; (iii) We use tracking and ego motion estimation

to deal with missed pedestrian detections and to remove

spurious detections.

Our pedestrian detection system runs at more than 10 Hz

on a standard multi-core PC mounted on a moving platform.

The system has been tested extensively in a variety of
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conditions, as well as on publicly available datasets to allow

comparison with other approaches.

The paper is organized as follows. In Section II we discuss

several approaches presented in the literature for pedestrian

detection. In Section III we give an overview of the whole

system proposed. The stereo based pedestrian detection and

structure classification are discussed in Section IV and Sec-

tion V. The image based pedestrian classification is presented

in Section VI. In Section VIII we discuss the results obtained

using our proposed pedestrian detection system.

II. RELATED WORK

Most research on pedestrian detection has used monocular

vision [3], [4], [5], [6], [7] , stereo vision [8], [9], [10],

[11], [1] and LIDAR sensing [12]. An overview of several

approaches for pedestrian detection can be found in [13].

One of the most popular recent appearance based pedes-

trian detection algorithms is the Histogram of Oriented

Gradients (HoG) method of Dalal and Triggs [3]. They

characterized pedestrian regions in an image using HoG

descriptors, which are a variant of the well-known SIFT

descriptor [14]. Unlike SIFT, which is sparse, the HoG

descriptor offers a denser representation of an image region

by tessellating it into cells which are further grouped into

overlapping blocks.

Another leading real-time, monocular vision system for

pedestrian detection in cars was proposed by Shashua et

al. [4]. The authors used a focus of attention mechanism

to detect window candidates very rapidly. The window

candidates (approximately 70 per frame on average) are

classified into pedestrian or non-pedestrians using a two stage

classifier.

Ess et al. [9], [10], [11] describe a stereo based system for

3D dynamic scene analysis from a moving vehicle, which

integrates sparse 3D structure estimation with multi-cue

image based descriptors ( shape context computed at Harris-

Laplace and DoG features [15]) to detect pedestrians. The

authors show that the use of sparse 3D structure significantly

improves of the performance of the pedestrian detector. Still,

the best performance cited is 40% probability of detection

at 1.65 false positives per image frame. While the structure

estimation is done in real time, the pedestrian detections is

significantly slower.

Gavrila and Munder [1] propose PROTECTOR, a real-

time stereo system for pedestrian detection and tracking.

PROTECTOR employs sparse stereo to generate putative

pedestrian ROIs, which are subsequently pruned using shape

(contour) and texture information. The choice of sparse/dense

stereo processing stages is justified based on real-time limi-

tations in stereo computation for the whole image. Temporal

information is also employed to increase the reliability of the

system and to mitigate missing detections, albeit at the price

of increased latency of alerting the driver.

Bajracharya et al. [8] describe a real-time stereo-based

system that can detect people up to 40 m in lightly cluttered

environments. The stereo range maps are projected into a

polar-perspective map that is segmented to produce clusters

Fig. 2. System architecture of our pedestrian detection system.

of pixels corresponding to upright objects. Geometric fea-

tures are computed for the resulted 3D point cloud and used

to train pedestrian classifiers. Appearance based features are

not used for classification.

III. OVERALL APPROACH

The proposed approach actively utilizes depth information

obtained from stereo computation. Given a depth map of a

scene, first a 3D template-based object detector is applied

to find candidate target object hypotheses. Simultaneously,

the depth map is processed with generic scene descriptor

to identify image regions that match predefined structure

classes. The scene labeling from these image regions is then

combined with object detector hypothesis to produce a final

set of object candidates. The resulting hypotheses are passed,

first, to an appearance-based pedestrian classifier and then,

to a tracker for further processing.

The data from a calibrated stereo-rig is processed at 30 fps

on a GPU card to compute dense disparity maps at multiple

resolution scales, using a pyramid image representation [16]

and a SAD-based stereo matching algorithm. The disparities

are generated at three different pyramid resolutions - Di,

i = 0, . . . , 2, with D0 being the resolution of the input image.

In the following, we will refer to disparity and depth images

interchangeably.

As shown in Fig. 2, the Pedestrian Detector (PD) module

takes the individual disparity maps Di, i = 0, . . . , 2 and con-

verts each individual one into a depth representation. These

three depth images are used separately to detect pedestrians

using template matching of a 3D human shape model, as

shown in detail in Section IV. The Structure Classification

(SC) module employs a combined D0 +D1 +D2 depth map

to classify image regions into several broad categories such

as tall vertical structure, overhanging structure, ground and

candidate regions. The detected pedestrian ROI list from the

PD module is pruned by testing overlap with non-candidate

region labels from the SC module. ROIs with more than 75%

overlap are removed. Next, the Pedestrian Classification (PC)

module takes in the remaining list of pedestrian ROIs and

confirms valid detections by using a cascade of classifiers.

Finally, the Pedestrian Tracking (PT) module compensates

for camera ego-motion using a Visual Odometry module
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and performs data-association between classified boxes in

successive frames.

IV. STEREO-BASED PEDESTRIAN DETECTION

We employ a stereo-based generic object detection algo-

rithm similar to [17] to generate initial pedestrian candidate

windows exclusively from range maps. The ground plane

(XZ in our convention) is divided into a discrete regular 2D

grid. Each specific grid location represents a 3D ground plane

location w.r.t the camera, and a pedestrian at this position

can be described by a single 3D geometric description of

its shape. A pedestrian-shaped cuboid rendered at the given

location gives us a depth-template representation of the

pedestrian as seen from the camera viewpoint. The depth-

templates for all grid locations are pre-computed for efficient

matching at run-time.

At run-time, for any given frame, we have the three

disparity maps Di, i = 0, . . . , 2 available. For each 3D

template, we look at its distance range Z and then select

one of the levels Di to perform 3D template matching. The

level is selected to ensure that, at each location, only the

relevant resolution disparity map with sufficient details is

used. We use D2 from 0 − 5 m, D1 from 5 − 15 m and

D0 beyond 15 m. For the matching step, the template is

correlated with the appropriate level Di by searching around

the X and Z directions, and around the Y (vertical) direction

to account for local pitch uncertainty due to calibration errors

and bumps in the road surface. The output of this template

matching is a correlation score map (over the horizontal

2D grid) from which peaks are selected by non-maximal

suppression as in [17]. Around each peak, the area of the

correlation score map with values within 60% of the peak

score is projected into the image to get the initial pedestrian

ROI candidate set.

Note that this detection stage must ensure very small

pedestrian miss rates, hence a larger number of peaks ob-

tained by non-maximal suppression is acceptable. We rely

on additional steps detailed next to prune these candidates.

The initial pedestrian ROI candidate set is pruned, first, by

considering the overlap between multiple ROIs: detections

with more than 70% overlap with existing detections are

removed. After this pruning step, a Canny edge map is

computed for each initial pedestrian ROI. The edge pixels

are filtered using the disparity map to remove potential

background edges by considering a disparity range around

the disparity of the detected ROI. A vertical projection of the

binary mask corresponding to the remaining edges results

in a 1D histogram from which peaks are detected using

mean-shift [18]. Each such peak potentially corresponds to a

pedestrian due to the high density of edges on people. A new

pedestrian ROI is initialized at each detected peak, which is

refined first horizontally, and then vertically to get a more

centered and tightly fitting bounding box on the pedestrian.

The refinement process involves using vertical and horizontal

projections, respectively, of binarized disparity maps (similar

to using the edge pixels above) followed by detection of peak

and valley locations in the computed projections. After these

TABLE I

STRUCTURE CLASSES USED FOR SCENE LABELING

V Tall vertical structure (magenta)

O Overhanging structure (green)

G Ground (yellow)

C Candidate objects (blue)

Fig. 3. Vertical Support Histogram. Points from the range map are projected
to the bins of a 2D histogram in the ground-plane coordinate system. Each
histogram bin captures a different height band. The diagram illustrates a
3-bin histogram.

refinements, any resulting overlapping detections are again

removed from the detection list. With this approach, we can

detect pedestrians upto a range of 40 m.

V. STRUCTURE CLASSIFICATION

A key step in our method for pedestrian detection is depth-

based classification of the scene into a few major structural

components. Given an image and a sparse and noisy range

map, the goal is to probabilistically label each pixel as

belonging to one of the following scene classes (see Table I

for a legend): ground, tall vertical structure, overhang and

(pedestrian) object candidates. We provide a brief outline of

our structure classification approach below. For details, the

reader is referred to [19].

To robustly handle depth-map errors, first, we define a

structure called the Vertical Support Histogram to accumulate

3D information over voxels in the vertical direction with

respect to a ground plane coordinate system.1 The ground

plane (XZ in our convention) is divided into a regular grid

and at each grid cell, a histogram of height-distribution of 3D

points is created. All the image pixels that map into a given

X,Z coordinate participate in that cell’s histogram. The

heights, Y coordinate, of all the points in a cell are mapped

into a k-bin histogram where each bin represents a vertical

height range. We call this structure by the name Vertical

Support Histogram (VSH) and denote it by V . Fig. 3 shows

how image points and the corresponding depth estimates are

mapped to 3D distributions for an example histogram with

k = 3 bins.

Next, for each image pixel, we use its 3D X and Z

coordinates to associate the histogram entry V (X,Z) with

this pixel. This transfers the 3D representation V to the 2D

image and gives us a k-dimensional feature vector for each

pixel.

In order to associate each pixel with structural labels,

we compute likelihoods for the feature vectors computed

above, conditioned on the specific structural labels defined

earlier. The likelihood densities are learned by kernel density

1The ground plane can be estimated using any of a number of well-known
techniques applied to the reconstructed stereo points, see e.g. [2].

905



(a) Original frame (b) Plan views of two VSH bins: 0−

2 m and 2− 4 m

(c) The 3D VSH bins projected into the image

(d) Image likelihoods conditioned on the labels: candidate objects and
vertical structures, respectively

(e) Labeled structures: tall verti-
cal (magenta) and candidate objects
(blue)

Fig. 4. Structure Classification illustrated with a two-bin VSH. In (b),
tall vertical objects (like buildings) span both histogram bins while objects
with low profile (like vehicles and people) span just the first bin. In (c),
the bins are projected back to image space and the structures that projected
to the histogram bins can be identified. The bin values provide a feature
representation at each pixel from which the label likelihoods in (d) are
estimated. These likelihoods can be seen to map well to the actual structure
in the scene.

estimation on the feature space defined by a small set of

labeled training data. Fig. 4 illustrates the labeling process

through a 2-bin VSH.

Next, we make use of the scene-context constraints arising

from the camera viewpoint by formulating the labeling

problem as an MRF where the smoothness constraints allow

us to reason about the relative positioning of the 3D structure

labels in the image. Thus, for each pixel, we will consider its

neighboring pixel (pixel with which it is 4-connected and is

close in its world depth) and define the cost of associating a

pair of labels with the two pixels. In our implementation,

we define this cost as a binary function which incurs a

penalty 1 if the two pixels cannot be neighbors for the given

labeling (e.g. a candidate pixel and a overhanging pixel) and

0 otherwise. The MRF was implemented using the max-

product belief propagation algorithm [20].

VI. PEDESTRIAN CLASSIFICATION LAYER

An image-based classifier is adopted in the system to

further evaluate pedestrian hypothesis candidates returned

from depth template-based detector. The proposed method

combines Histogram of Oriented Gradients (HoG) with con-

tour segments of body parts to address the issues in HoG

computation.

In the general object detection schemes based on regres-

sion such as Adaboost and SVM [3], [7], [21], it is often

required to search for optimal ROI size and position to

obtain valid classification scores. This is due to the sensitivity

of the classifiers to ROI alignment as rigid placement of

the local sampling windows inside ROI become susceptible

to different object configuration changes. This results in

the need for exhaustive search over multiple positions and

scales for each input ROI. False negatives can often occur

when people appear against complex background of high

textureness because image gradient-based features become

fragile in the presence of multiple gradient directions in a

local image patch.

These issues are addressed by our approach of combining

contours with HoG by (1) local parts alignment and (2)

background filtering.

A. Contour+HoG-based Classifier

In this approach, basically a set of shape contours of

pedestrian templates is associated with each local sampling

window to guide feature localization and filtering process.

Local shape contour set is constructed by sampling binary

body part contours from representative silhouette database.

To cover pose and shape variation of people, each local

sampling window typically contains multiple (5 ∼ 10) part

templates. Figure 5 displays examples of part templates of

Fig. 5. Example of local contour models. The part vocabulary is
sampled from silhouette contour data, where each local vocabulary
set can cover body pose and shape variations.

different sampling windows.

The procedure for contour-based matching and evaluation

is as follows. First, each local sampling window inside ROI

is localized by chamfer matching. Given an input ROI, the

chamfer score for each part template is computed in the local

region and the associated sampling window is anchored at

the maximum correlation based on scores computed from

the local template set. The proposed local template-based

scheme allows flexibility of matching multiple pose pedes-

trians effectively without maintaining a large set of global

contours and provides a computationally efficient solution.

Secondly, a global foreground mask is composed by

overlapping the set of matched local templates, each of which
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is weighted by matching scores at the refined position. The

foreground mask is used to suppress noisy image features in

the background, where in the HoG computation process the

gradient values on the matching pedestrian contour parts are

enhanced by non-zero weight while the others potentially

from the background are filtered out. The procedure of

contour matching and filtering is illustrated in figure 6.

(a) (b) (c) (d)

Fig. 6. Procedure of contour+HoG classification. (a) fixed local
sampling grid inside ROI, (b) local sampling window refinement
from contour matching, (c) composed foreground mask from
contour segments, (d) filtered HoG directions underlying masked
regions.

Figure 7 shows examples of foreground mask on pedes-

trians and negative patches. It can be seen that on the

positive pedestrian examples, the proposed scheme can refine

sampling window position on top of underlying body parts

and thus enhance body contours. On the negative image

patches however, it produces non-conforming shape and

window positions in general.

Fig. 7. Foreground mask examples. Each set of three images display
original image, foreground mask from matched part templates and
the resulting filtered edge map. On the right-most column set
is shown the results on negative data. Note that local contour
parts can capture global body contours at various poses from its
combinations. However, it does not form conforming pedestrian
masks on negative patches.

Although this scheme can provide effective solutions to

aforementioned issues, it faces a limitation on the low-

resolution image patches due to fragility that arises from

obscure object boundary in contour extraction and matching

steps. To meet this challenge, we adopt a classifier suite that

is tuned to different distance ranges. Three classifiers are

used where for the closest range of [0 ∼ 20m], contour plus

HoG classifier is used, while for the distance intervals of

[20 ∼ 30m] and [30 ∼ 40m], a conventional HoG-based

classifiers are employed. Each classifier is trained separately

with image dataset with each corresponding preset image

resolution with Adaboost. The resulting classifiers consist of

multiple (3 ∼ 4) cascade layers, respectively.
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Fig. 8. ROC curve for Contour+HOG v.s. HOG-only classifiers.

Figure 8 shows ROC curve of the Contour+HoG classifier

and HOG-only-based classifier that is evaluated on high res-

olution image dataset. The figure shows distinctive advantage

of the Contour+HoG with better performance for both true

detection and false positive rate.

VII. PEDESTRIAN TRACKING

We adopt simple and effective image correlation-based

tracker to recover intermittent missing pedestrians. It consists

of 3D feature-based camera motion estimation and image

correlation-based tracking.

A. Visual Odometry-based Camera Motion Estimation

We use Visual Odometry (Visodo) [22] to compensate

for camera ego-motion. Visodo computes 3D motion of the

camera, specifically rotation and translation of a vehicle

between adjacent frames with respect to the ground plane.

To compute camera motion, Visodo first extracts feature

points on each frame, where features are obtained from SIFT

corner points. The correspondences between adjacent frames

are then established by using RANSAC (random sample

consensus)-based point association. Given correspondences,

the relative camera motion can be computed by solving the

structure from motion equation.

B. Image-based Correlation Tracker

The estimated camera motion parameter is used to predict

the location of the detected pedestrian boxes on image

(ROI) in the current frame. The Visodo-based prediction

is important to accurately locate ROIs under large image

motions typically induced by vehicle turning motion, for

example.

Given predicted location of ROI from the previous frame

(t−1), the new location in the current frame (t) is estimated

by patch correlation-based tracker module. The correlation-

based tracker refines ROI position by searching through mul-

tiple candidate positions and scales in the enlarged prediction

window that matches the highest appearance similarity with

the corresponding ROI image patch.
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TABLE II

EVALUATION DATA USED FOR OUR EXPERIMENTS

Sequence
Name

#Frames
Annotations used

Ess et al.[9] Us

Seq01 1000 5193 5122
Seq02 451 2359 1999
Seq03 354 1828 1893

VIII. EXPERIMENTS

A. Data and Evaluation Methodology

Data. We experimentally validate our approach on the

publicly available dataset [9]. The dataset consists of four

challenging test sequences (640 × 480 at 15Hz) of busy

shopping streets with multiple people moving in different di-

rections, taken on different days and under different weather

conditions.

Evaluation Methodology. For evaluation, we use the

ground-truth pedestrian annotations available with the

dataset. All the sequences are completely annotated up to

a distance of ≈25 m. However, the annotation set is over-

complete with invalid cases such as completely occluded

pedestrians for example. So accordingly a subset of anno-

tations is used for evaluation in the previous approaches.

The exact subset of annotations used by Ess et al.[9], [10],

[8] for their reported results is unfortunately not available

thus we composed valid subset based on the following

visibility critera. The subset of annotations we use includes

pedestrians which: (i) are not significantly clipped by the

camera field-of-view, and (ii) are at least 50 pixels high.

For a detection to be counted as correct, it has to overlap

with an annotation by more than 50% using the intersection-

over-union measure [23]. Table II compares the sizes of the

annotation subsets used by the current approach with [9] and

it is shown to be comparable.

B. Experimental Results

The ROC curves for our system were obtained by vary-

ing the decision boundary threshold for the appearance-

based classifier stage in our pipeline. Fig. 9(a) shows the

performance of different configurations of our system on

Seq03. The reported configurations are made by combination

of structure classification (SC), appearance classifier (CLS)

and tracker (TRK). CLS without SC shows the performance

of the appearance classifier directly running on the stereo-

based pedestrian detector output. CLS with SC shows the

performance when the candidate input ROIs to the appear-

ance classifier are filtered using the labeling from structure

classification (SC). In this filtering step, any ROIs with

more than 75% non-candidate label patches (from amongst

all labeled patches within the ROI) were removed. The

remaining boxes were then fed to the appearance-based

classifier as before. Note that the performance gain with the

use of the SC module clearly indicates the effectiveness of

the scheme in pruning out potential false positive cases from

structural cues. The curves TRK with and without SC were

similarly generated by tracking classifier outputs. TRK with

SC corresponds to current end-to-end system configuration

at run-time.

Fig. 10. Structure and Appearance Classification. The first row shows the
result of structure classification; the second row shows the final classified
boxes.

Figs. 9(b)-(d) compare our end-to-end performance (given

by the TRK with SC curve) with some approaches in recent

literature. The results from [9], [10], [11], [8] are included

wherever available.

Unlike other comparable approaches from the literature,

our system was not trained on any of the data from this

dataset. We used a combination of urban data collected

from a moving vehicle along with the public INRIA dataset

for training. The proposed system exceeds the reported

performance of the leading real-time system [8] and matches

with those of the non-real-time approaches [9], [10].

Fig. 10 illustrates examples of cluttered scenes where

the structure classification removed significant portion of

the scene from consideration by the appearance classifier.

Only ROIs detected in the blue regions are processed by the

appearance classifier and the confirmed ROIs are shown in

red in the bottom row. In Fig. 11 we show some examples

of final pedestrian detection output from our system. Note

the successful detections at far distances, in complex areas.

Computational Performance. The proposed method is

implemented on an in-vehicle pedestrian detection system.

Our implementation takes about 25ms per frame for stereo

computation, template pedestrian detection and structure

classification on an Intel Dual-Core processor. The overall

system including the appearance classifier runs at about

10Hz.

IX. CONCLUSION

We have presented a real-time stereo-based pedestrian

detection system which incorporates several novel ideas: (i)

we exploited dense stereo to classify 3D structures and to

detect pedestrians thus reducing the number of false positives

that have to be classified using 2D shape and appearance

information; (ii) we have used the 2D contour and ap-

pearance to improve the classification rates over methods

using HoG only; (iii) we have used multiple pedestrian

classifiers trained at several depth bands to increase the

system performance. The results on publicly available dataset

show superior performance than leading approaches in terms

of accuracy and speed.
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Fig. 9. ROC curves showing our system performance: (a) Improvement in performance using structure classification (SC), appearance classification (CLS)
and tracking (TRK), and (b)-(d) comparisons with other representative approaches from the literature: Ess1 [9], Ess2 [10], Ess3 [11], Bajracharya [8].
This figure is best seen in color.

Fig. 11. Examples of pedestrian classification showing coverage at different distances upto 40 m. White boxes denote the output of the
stereo-based pedestrian detector after structure classification. Red boxes denote the final pedestrian classifications. The last image shows
an example of a failure of our system for the furthest pedestrian.
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