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Abstract—Analyzing change in the 3D structure of the optic
disc over time has long been recognized as central to the
diagnosis of glaucoma but has been inadequately addressed
by computer vision methods. Currently, clinicians examine
stereo pairs from different time instants for interval changes
indicative of glaucoma. Due to the clinical procedures in
capturing optic disc images, these stereo pairs are usually
completely uncalibrated - the camera intrinsics and extrinsics
are unknown. Clinicians have to account for these unknown
factors and hence their diagnoses of optic disc stability or
change are subjective.

Changes in the 3D structure of the optic disc are typically
accompanied by changes in the 3D structure of blood vessels
in that region. Therefore, change in the 3D structure of
blood vessels can be used for glaucoma diagnosis. In this
paper, we introduce a projective geometry based approach that
reconstructs and aligns 3D blood vessel networks given two
stereo pairs of optic disc images. We demonstrate that this
alignment can identify regions where the vessel structure has
changed. Since calibration is unavailable, the 3D structures
and the alignment have a projective ambiguity; and hence,
we cannot use an absolute threshold on the alignment error
to automatically identify change. We have therefore developed
an interactive tool that highlights regions with the largest
alignment errors. This tool demonstrates the utility of our
approach and also can guide clinical observers to optic disc
regions where they should look for changes. We believe that
our approach can serve as a platform to develop much needed
novel tools for glaucoma diagnosis.

Keywords-Glaucoma diagnosis, reconstructing 3D blood ves-
sel network, change detection via 3D alignment.

I. INTRODUCTION

Glaucoma is the second leading cause of blindness world-
wide. The visual impairment in glaucoma is caused by a dis-
tinctive form of degeneration of the optic nerve. Clinically,
this degeneration is manifest by a characteristic 3D structural
change in the optic disc – the portion of the optic nerve
within the eye [1]. For many decades, the “gold standard”
of optic disc evaluation in glaucoma has been qualitative
evaluation by clinical observers of stereo images of the
eye. Figure 1 (a,b) shows such a stereo pair. The circular
region in the center is the optic disc. Due to the process
in which these images are typically captured, the stereo
pairs are completely uncalibrated - both camera intrinsics
and extrinsics are unknown. Thus, clinicical observations are
inherently subjective and quite variable. Most prior works

(a) (b)
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Figure 1. (a,b) Two images from an uncalibrated stereo pair. The circular
region in the center is the optic disc; the more centrally located, lighter
vertically oriented structure within the optic disc is a depressed region in
3D called the cup. (c) Color coded change detection result produced by our
interactive tool. Vessel points that have changed are marked in red, points
that are unchanged are marked in green, while points we are not confident
about are marked in blue. (d) Change region marked by a clinical observer.

on using imaging methods for glaucoma diagnosis have
focused on defining certain structural characteristics of the
optic disc. For instance, many computer vision approaches
and specialized instruments aim to measure parameters of
the optic disc, such as the cup-to-disc ratio1. However,
comparing these different approaches can give variable re-
sults and/or inconclusive clinical diagnoses. It has long been
appreciated that an accurate method to detect changes in
the 3D structure of the optic disc would comprise a major
advance in glaucoma diagnosis, but no such robust, validated
methods are currently available.

Changes in the 3D structure of the optic disc are typically
accompanied by changes in the 3D structure of overlying
blood vessels in that region. Therefore, for glaucoma diag-
nosis, change in the 3D structure of blood vessels can be used
as a proxy for identifying structural changes in the optic disc.

1Cup-to-disc ratio is the ratio of the width of the central deeper portion
to the entire diameter of the optic disc.
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We build on this idea and present a method that automatically
reconstructs and aligns 3D blood vessel networks given two
stereo image pairs. We then demonstrate that changes in
3D structure between the stereo pairs can be identified by
comparing the aligned vessels. Thus, our approach can form
the basis for improved glaucoma diagnosis.

To our knowledge, no previous work has compared 3D
reconstructions over time to identify changes from stereo eye
images. Our approach specifically exploits the 3D structure
of blood vessels on the optic disc. It is motivated by
the observation that, in glaucoma, changes in blood vessel
structure are very local and reflect regional areas of optic
nerve degeneration. Further, we also observe that the range
of scene depths in these stereo images is small and that
most of the retinal surface is near planar, except within
the optic disc region. Therefore, we use a plane + parallax
[2], [3] representation of the 3D structure for each stereo
pair. We show that by establishing corresponding feature
matches across all images in the two stereo pairs, we can es-
timate the 3D homography between their coordinate frames.
This homography can then be used to align the 3D vessel
networks computed from stereo. Since the homography is
projective, we cannot use an absolute threshold on the
alignment error to detect change automatically. We therefore
developed an interactive tool which highlights regions with
large alignment error and guides clinical observers to regions
where they should seek change. In this tool, the observer
has the option to set the change threshold and observe how
regions marked as change vary with different thresholds. The
tool demonstrates the potential diagnostic utility of our 3D
alignment based approach.

To summarize we make the following contributions:
• We demonstrate how we can recover the 3D structure

of vessel networks from uncalibrated stereo images.
We recover the fine intricate geometry of the vessel
networks and not just the rough retinal surface as in
other previous works.

• We also show how we can align 3D vessel networks
computed from two uncalibrated stereo pairs. This
alignment can then be used to determine which vessel
structures have changed. To our knowledge, ours is the
first work that demonstrates such a capability.

• We have also developed an interactive tool that uses the
estimated alignment to guide clinical observers to the
vessels and hence optic disc regions that are most likely
to have changed.

• A key component of our alignment process is finding
matching points across all four images of two stereo
pairs. The optics and capture process of the images
yield unique challenges for feature matching – varying
illumination, small depth of field, and noise. While we
use standard techniques – SIFT and Harris features –
we have devised a work flow that yields robust, plentiful
and well distributed matches across all images.

II. RELATED WORK

Several sophisticated systems are available for recovering
the 3D geometry of the inside of the eye, such as optical
coherence tomography (OCT) systems [4] and the Heidel-
berg Retina Tomograph (HRT) which is based on a confocal
scanning laser ophthalmoscope [5]. These provide accurate
measurements, but are expensive and require special capture
sessions. In [6], an approach for detecting glaucomatous
progression based on orthogonal decomposition is proposed.
The approach uses absolute topographic measurements from
the HRT and introduces several measures to compare mea-
surements taken in follow-up exams against baseline mea-
surements to detect progression and mark out change areas.

Computerized glaucoma diagnosis has also been ap-
proached using 2D image features only, typically, by looking
for 2D optic disc and cup (the deepest structure inside the
disc with detectable appearance differences) boundaries and
then computing their relative size (radii) as a ratio. Xu et
al. [7] proposed such an approach to automatically recover
this ratio from single eye images. As stated above, most prior
works on using imaging methods for glaucoma diagnosis
focused on defining structural characteristics of the optic
disc that are indicative of the disease and not on detecting
3D changes in the optic disc over time, as developed here.

Several works have applied stereo matching techniques to
automatically recover the 3D geometry of the inside of the
eye. Tang et al. [8] recently proposed a multi-scale stereo
matching approach to reconstruct the shape of the optic
nerve-head using stereo images. Their images are captured
simultaneously and have a fixed stereo baseline. Thus, they
do not need to resolve the epipolar geometry estimation
issues that we need to address. Several other works [9], [10],
[11] have also proposed stereo reconstruction approaches
but not with the objective of comparing reconstructions over
time. Medioni and his colleagues [12], [13], [14] have pro-
posed approaches to handle the epipolar geometry estimation
issues posed by the near-planar surface of the retina.

III. PLANE + PARALLAX REPRESENTATION

The range of scene depths in stereo images of the eye
is small and the retinal surface is almost planar, barring
the optic disc region. For such 3D structures the Plane
+ Parallax representation [2], [3] is a natural choice as
it yields a reference coordinate system that is close to
the structure. We use a plane to approximate the almost
planar parts of the retinal surface and the rest of the 3D
structure is represented as the distance from this plane. For
completeness, we now give a quick overview of Plane +
Parallax based 3D representation.

Consider two views Vl and Vr of the 3D structure. Let
π be the reference scene plane which is used to define the
3D structure and let A be the 3 × 3 2D homography that
maps points in Vl to Vr via π. For a scene point on π, A
will exactly map its projection in Vl to its projection in Vr.
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Figure 2. Two views of a 3D vessel network, computed from a stereo pair,
in a Plane+Parallax representation.

However, for a scene point not on π, its projection in Vl
mapped to Vr by A will not coincide with its projection in
Vr. The residual is termed as its disparity and represents
how far the 3D point is from the reference plane. Let pl and
pr be projections of a scene point P in views Vl and Vr,
respectively. It can be shown that [2], [3]

pr ∼= Apl + δvr, (1)

where δ is the disparity with respect to the plane π, vr is the
unit vector in the direction (pr−er), er being the epipole in
view Vr, and ∼= denotes equal upto a scale. The disparity δ is
infact invariant to the actual choice of view Vr; it depends
on the choice of the reference scene plane π. Therefore,
we can define the 3D point P using its projection in Vl -
[plx ply 1] - and its disparity as

P = [plx ply 1 δ]. (2)

We now describe how we compute 3D points on the
vessel network given an uncalibrated stereo pair. First, we
find matching features between the two images and estimate
the Fundamental matrix between them (details are given in
Sections VI-A and VI-B). The Fundamental matrix is used
to compute transformations that rectify the images [15]. On
the left rectified image (chosen as the reference), we detect
points on the center of the vessels using a multiscale matched
filter based method [16]. Figure 1(c) shows an example of the
2D vessel network extracted at this stage. It is for these pixels
that we perform stereo matching (stereo matching details
are in Section VI-D). The disparities produced by stereo
matching can be interpreted as yielding corresponding points
on vessels in the two rectified images. Undoing the rectifying
transforms, we get correspondences in the original images.
Now given the homography A that represents the mapping
between the views via a reference scene plane π, we can
use Equations 1 and 2 to map these correspondences to 3D
points. Figure 2 shows two views of a 3D vessel network
computed in this fashion.

IV. FEATURE BASED PROJECTIVE 3D ALIGNMENT

In the previous section, we have seen how we can recover
a set of 3D points on vessels given a stereo pair. Given two
stereo pairs, we can recover two sets of 3D points. However,
we do not have one-to-one correspondence between them
since vessel detection is performed independently in the
left image of each stereo pair. In such a scenario, one
might consider using techniques like Iterative Closest Point
(ICP) to align the two point sets. However, since calibration

is unavailable, the aligning transformation is more general
than the rotation and translation transformations typically
assumed for ICP.

We have developed an alternate approach that estimates
the alignment transformation using corresponding points that
are common across all four images of the two stereo pairs.
The motivation behind using such correspondences is that
when we combine the correspondences from the left and
right images of a stereo pair to get 3D points, we get
3D point correspondences across the stereo pairs. These
correspondences are not restricted to be on vessels and are
distributed all over the image. That is, the alignment process
does not use the vessel network directly.

Let us now see how we can align two sets of correspond-
ing 3D points computed from two stereo pairs. Since the 3D
points are defined in a projective frame, we know that they
are related by a 3D homography [17]. More formally, if P1

and P2 are corresponding 3D points computed from stereo
pairs 1 and 2 respectively (e.g. using Equation 2), then there
is a 4× 4 transformation H that satisfies

P2
∼= HP1, (3)

The homography H is the same for all corresponding points
and completely accounts for all the unknown camera intrin-
sics and extrinsics for the two stereo pairs2.

We now describe the steps in our alignment procedure. For
illustration, consider the two stereo pairs shown in Figure 3.
These are separated by 3 years and the 3D structure has
changed in that time. Let L1 and R1 denote the left and
right images of stereo pair 1, and let L2 and R2 denote the
left and right images of the stereo pair 2.

A. Finding 2D Image Correspondences

In the first step, we find correspondences across all images
of the stereo pairs. We pick L1 as the reference image and
find Harris features in it. For these Harris features we try
to find correspondences in each of the other images - R1,
L2, and R2 (details on feature matching are given in Section
VI-A). We then retain only those correspondences that are
common across all three pair-wise matching steps.

We separate these common 2D correspondences into two
sets – ones outside the optic disc (bright region in the center),
and ones inside the optic disc. Figure 3 shows the correspon-
dences common across all four images where the red points
are outside the optic disc while the green ones are close to
or inside the optic disc3. This separation of correspondences
into two sets is motivated by our earlier observation that the
3D structure of the retina is nearly planar outside the disc,
while the inside of the disc shows a lot of variation in depth.

2It should be noted that H does not account for lens distortion. However,
we have found that cameras typically used for such images come with high
quality lenses with very low distortion.

3This separation is performed by using a mask of the optic disc region
computed using the approach of [18].
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Figure 3. (a,b) Left and right images of stereo pair 1. (c,d) Left and
right images of stereo pair 2. The 2D correspondences common to all four
images are also shown. The correspondences outside the optic disc are
marked in red, while the ones near or inside the optic disc are marked in
green. The three correspondences that form the reference scene plane for
the 3D homography that best aligns 3D structure computed from the two
stereo pairs are marked in cyan.

Consequently, when picking correspondences to define the
reference plane for the Plane+Parallax representation we
would like to pick points from outside the disc, while to
ensure that the homography estimation is well conditioned
we would like to pick correspondences from inside the disc
where there is greatest variation in 3D structure.

B. Computing 3D Points from 2D Correspondences

In order to determine the set of 3D points for stereo pair 1
from its 2D correspondences, we need the 2D homography
associated with a reference scene plane (Section III). The 2D
homography A used in Equation 1 has 8 degrees of freedom
and we need 4 2D correspondences to define it. From the
definition of Plane+Parallax the homography A should map
the epipoles in the left and right views [2], [3]. So we can
use the epipoles and three 2D correspondences between L1

and R1 to get the 8 constraints needed to define A. Once A
is determined, we can use Equation 2 to get the 3D point
corresponding to each 2D correspondence. We follow the
same procedure to generate the 3D point set for stereo pair
2. For simplicity, we pick the same corresponding features
to define the same reference plane in both stereo pairs.

C. Computing 3D Homography from 3D Correspondences

A 3D homography (Equation 3) has 15 degrees of freedom
and we need atleast 5 corresponding 3D points to derive it.
Note that to define the reference scene plane’s homographies
(A’s), we picked three 2D correspondences. The 3D points
derived from these 2D correspondences give us three of the

required correspondences4. Now we need only two more
correspondences. To ensure that the homography estimation
is well conditioned we pick 3D points derived from two 2D
correspondences from inside the optic disc region (marked
in green in Figure 3). These 5 correspondences can be used
to define the 3D homography H in Equation 3.

Till now we have assumed that the 2D correspondences
across all four images of the stereo pair are correct. However,
inevitably, the set of correspondences has outliers, which
should be ignored. In order to robustly estimate the 3D
homography, we have developed the following RANSAC-
based procedure:

1) Choose reference plane πi: We randomly pick three
2D correspondences from outside the optic disc to de-
fine 2D homographies corresponding to the reference
scene plane πi. These 2D homographies are used to
construct the 3D point sets for the two stereo pairs.

2) Ransac fit of H given πi: We now use a 2-point
RANSAC to find the best 3D homography estimate
with the reference scene plane πi. We randomly pick
two corresponding 3D points from inside the optic
disc region to get a 3D homography Ĥ as described
above. For all other 3D points, we then compute the
fitting error with respect to Ĥ . If P j1 and P j2 are
corresponding 3D points from stereo pairs 1 and 2,
respectively the symmetric fitting error is defined as

Ej = ||P j1 −α(ĤP
j
2 )||2 + ||P

j
2 −α(Ĥ−1P

j
1 )||2, (4)

where ||.||2 denotes the L2-norm and α(.) is a function
that scale normalizes its vector argument so that its
third component is 1. If the fitting error is less than
a threshold T , then we consider the correspondence
to be an inlier, else it is considered an outlier. This
step is repeated with different randomly chosen pairs
of correspondences inside the optic disc. Of all the
RANSAC trials, we pick the one with the maximum
number of inliers - Ni. All the inlier correspondences
in this trial are then used to get a least squares estimate
Hi as per Equation 3.

In Step 1, we pick a reference plane πi to define the set of
3D points and in Step 2, we find the best 3D homography
that aligns 3D points in the coordinate frame defined by
πi. We repeat the above process T times and then pick the
homography Hi with the maximum number of inliers Ni.
This is the best homography H that aligns 3D structures
computed using the associated reference scene plane πi. We
typically have around 200-400 correspondences (around 80%
of them outside the optic disc) across all four images of
the two stereo pairs and empirically we found that T =
5000 times gives good results. The triplet of correspondences
chosen in Step 1 that yielded the best 3D homography for

4Since these 3D points lie on the reference scene plane, they have zero
disparity; δ = 0 in Equation 1.
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(a) Two views of the 3D vessel network computed from the top stereo pair shown in Figure 3.

(b) Two views of the 3D vessel network computed from the bottom stereo pair shown in Figure 3.

(c) Two views of the 3D vessel networks in (a) and (b), aligned in the same coordinate frame.

Figure 4. Computing 3D vessel networks from two stereo pairs (shown in Figure 3) and aligning them.

the stereo pairs in Figure 3 are marked in cyan.
Note that in principle we could have used a 5-point

RANSAC process to estimate the best 3D homography.
Our approach, as we mentioned earlier, is tailored to the
particular geometry seen in these images. If we have 3D
points on the vessels computed from the two stereo pairs (as
described in Section III and in more detail in Section VI-D),
we can use the estimated 3D homography to align the 3D
points. Figures 4 (a) and (b) show views of the 3D vessel
networks computed from respectively the top and bottom
stereo pairs in Figure 3. Figure 4(c) shows views of both
vessel networks in the same coordinate frame, where the
alignment was computed as described above. The error in
this 3D alignment would be indicative of change, which can
be used in the diagnosis of glaucoma. We discuss this next.

V. CHANGE DETECTION

Glaucoma progression is characterized by small local
changes in the 3D structure of the optic disc. We assume

that a 3D homography computed using image features lo-
cated over the entire image would globally align ‘stable’ or
unchanged 3D vessel points from two stereo pairs, but fail to
align small local changes. Thus, by studying the alignment
error we can detect vessels with changed structure.

A. Computing the Alignment Error

We now show how to compute the alignment error for 3D
vessel points from two stereo pairs, using the 3D homog-
raphy H estimated as described in Section IV-C. Let P j1
and P k2 represent 3D vessel points computed from stereo
pairs 1 and 2, respectively. We apply H to P j1 to get the
corresponding point in the coordinate system of P2:

P j1→2 = HP j1 . (5)

P j1→2 is normalized so that its third component is 1. As
noted earlier, the vessel points in the two stereo pairs
need not correspond. So for each P j1→2 we need to find
the ‘closest’ point P l2. In our implementation, P l2 is the
point that is closest to P j1→2 in the x − y image plane
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(first two dimensions of the vectors). We then compute the
alignment error as the difference in the disparity values
(fourth component) of P j1→2 and P l2. This is the alignment
error in the coordinate frame of stereo pair 2. Using H−1

we can compute the alignment error in the coordinate frame
of stereo pair 1 in an analogous manner.

B. Interactive Change Detection

Since calibration information is unavailable, the 3D recon-
structions and alignment have a projective ambiguity, and so
the alignment errors are relative to each individual coordinate
frame. Thus, one cannot use an absolute threshold on the
alignment errors to identify changed structure. Consequently,
to demonstrate the diagnostic utility of our approach, we
have developed an interactive tool that allows a clinical
observer to vary the change threshold on the alignment error
and determine the regions which are most likely to have
changed. Thus, the tool serves as a guide in identifying
changed regions.

Figure 5 shows results from our interactive tool for three
different eyes. Each row has images for a particular eye and
the first three columns have the change detection results for
three progressively decreasing change thresholds. The results
are shown by assigning vessel points one of three colors – (a)
green, which signifies vessel points that have not changed,
(b) red, which signifies vessel points that have changed, and
(c) blue, which denotes vessel points about which we are not
confident in making a judgment. The last category includes
points on vessels that are aligned with the epipolar direction.
These vessels appear horizontal in the rectified stereo images
and hence we cannot get good correspondences for them.
The vessel detection algorithm of [16], which we apply
on the rectified images, identifies points along the center
of vessels and also provides the local vessel orientation at
each point. We use this orientation information to identify
such low confidence points. For the above results, points on
vessels with orientation ±5◦ from the horizontal are marked
in blue. Vessel points that are detected in only one image
are also marked in blue.

In the figures, we have marked out vessel points only
near the optic disc. This is because in diagnosing glaucoma,
clinicians only analyze vessel structure in the vicinity of the
optic disc. The actual change regions marked by clinical
observers are shown in the last column of Figure 5. One
can see that as the change threshold is decreased the vessel
region corresponding to the actual change is marked more
clearly in red. For these three results we used stereo pairs
separated by 3, 7, and 3 years, respectively.

VI. OTHER COMPONENTS OF THE ALIGNMENT PROCESS

In the previous sections, we have shown how to recon-
struct and align 3D vessel networks to detect change. This
process uses several components that use standard techniques

for tasks like feature matching and epipolar geometry es-
timation. However, these had to be adapted to the unique
challenges presented by eye images. For completeness, we
describe some of these components in this section.

A. Feature Matching
There are a number of challenges to precisely detecting

features across different subjects due to a large variation in
their appearance and visible anatomical structures. Similarly,
finding corresponding features between different images of
the same eye is made difficult by their differing illumina-
tion, depth-of-field, focus and the actual retinal area pho-
tographed. Recent works like [13], [12] have proposed using
different features like vessel bifurcations “Y-features” or
SIFT features for the alignment task. However, considering
the wide variety of images we have come across, we have
found neither the density or the localization of these features
as adequate for the precise 3D alignment problem we focus
on in this paper. We follow a two-stage process where
we first use large-scale SIFT features to bring the two
images into a coarse alignment and then use Harris corners
for a more precise estimation of the alignment parameters.
Our matching approach is most similar to the hierarchical
approach in [19] but we use different features in our two
stage process and we employ a search strategy in the second
stage as described next.

Let Il and Ir be two images in which we need to find
corresponding features and let Il be the reference image.

SIFT-based Coarse Alignment: We first detect coarse-
scale SIFT features in each image and then match those
features using the 1-NN/2-NN ratio scoring measure [20]
to get corresponding points. These correspondences are used
in a RANSAC-based 2D homography estimation step to
compute a homography that warps Ir towards Il. Let us
denote the warped image I ′r.

Harris Feature Matching: Given the continuous vessel
structure in eye images, it is difficult to directly detect cor-
responding Harris features in both images. Hence, methods
that try to establish correspondences between pre-detected
features in both images, like [21], are inapplicable. There-
fore, we employ a search strategy where the Harris features
are detected only in the reference image Il. For a Harris
feature at (x, y), we take a w × w patch around it and
search for the best matching patch in a local q × q 2D
neighborhood around (x, y) in the warped image I ′r. This is
possible because after the SIFT-based first stage, the images
Il and I ′r are ‘close’ to each other. For matching patches
we use normalized cross-correlation. For each match we
also compute a confidence measure. If s1 and s2 are the
highest and second highest correlation scores in the q × q
neighborhood, we define the confidence c as:

c =
|s1 − s2|

s2
. (6)

We discard matches with confidences below a threshold ct.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Interactive Change Detection. Each row corresponds to a particular eye. (columns 1-3) Change detection results for interactively chosen change
thresholds. The thresholds decrease from column 1 to column 3. See text for details on the color coding of the change detection result. (column 4) Change
regions marked by a clinical observer.

We have found that this two-stage process yields robust,
plentiful and well distributed matches as can be seen in
Figure 3. Our images are 2000×1712 pixels and for feature
detection, we have used w = 51, q = 61, and ct = 0.025.

B. Epipolar Geometry Estimation

The near-planarity of the retinal surface makes it chal-
lenging to accurately estimate 3D characteristics including
the recovery of the Fundamental matrix between an image
pair. Choe et al. [13] suggested a virtual parallax approach
for robust recovery of the epipolar geometry for a near-planar
retinal surface. In their approach, a 2D homography Hπ

(which maps points between the images via a plane π) is first
estimated between the two images using a RANSAC-based
feature matching procedure. Thereafter, another RANSAC
procedure determines two additional correspondences such
that their parallax vectors, with respect to the plane π,
intersect at an epipole. In practice, we found this procedure
to be inaccurate due to the small range of depths on the
retinal surface. In many cases, the parallax vectors are too
small in their magnitude to compute an intersection robustly.

As we pointed out in Section IV-A, points inside the optic
disc exhibit a large variation in depth. Therefore, we restrict
the search for correspondences in the second RANSAC step
to be inside the optic disc. To aid this process, the optic

disc is automatically segmented using the simple technique
suggested in [18]. Additional feature correspondences are
extracted in this region using the Harris-based technique
described in Section VI-A. These correspondences are used
to robustly estimate the epipole e. The fundamental matrix
is then derived as F = Hπ[e]x.

C. 2D Vessel Detection

For detecting image points on blood vessels, we have used
the multi-scale match filter approach of [16], which in turn
builds on the work in [19]. The algorithm in [16] uses a
collection of matched filters tuned to a variety of vessel
widths and orientations to estimate a filter response at each
pixel in the input image. Then, it uses a ridge detector on
the response map to determine pixels along the center of
the vessels. These individual center pixels are then chained
together in a greedy ‘longest-vessel-first’ strategy to get
vessel segments. The algorithm also produces estimates of
the local vessel width and orientation at each point. We use
the orientation information in Section V to determine vessels
that are close to horizontal in the rectified stereo images.

D. Stereo matching for Vessel Points

Given a pair of stereo images and the Fundamental Matrix
that relates them, we can compute rectifying transformations
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that warp the images such that the epipolar lines are hori-
zontal [15]. We then use simple block based matching to
find correspondences for all 2D vessel points extracted in the
reference image using the process described in Section VI-C.
For our results we have used 51 × 51 windows with zero-
mean normalized cross correlation as the match measure.
For robustness to rectification errors, for each disparity shift,
we also compute the correlation obtained by offsetting the
matching window by ±1 scan line in the right image.

VII. DISCUSSION

In this paper, we have demonstrated how to recover 3D
vessel networks from uncalibrated stereo pairs. We have
also shown how we can align 3D vessel networks computed
from two stereo pairs with the aim of identifying changed
vessel structures over time, using the alignment error. To our
knowledge, this is (a) the first work that addresses recovering
the fine intricate geometry of blood vessel networks from
uncalibrated stereo pairs, as opposed to the rough retinal sur-
face recoveries in previous works, and (b) the first work that
determines change in 3D structure by automatically aligning
3D vessel networks from two uncalibrated stereo pairs. Since
calibration information is unavailable, the reconstructions
and the alignment have a projective ambiguity. Thus, we
cannot use the alignment errors directly to identify change.
Consequently, we developed an interactive tool that allows
observers to vary the change threshold on the alignment
error, thus identifying the regions which are most likely
to have changed. This interactive tool demonstrates the
potential utility of 3D vessel reconstructions for change de-
tection. We believe that our approach would permit the future
development of fully automated change detection algorithms,
for instance by studying the distribution of relative alignment
errors. Such automatic tools could potentially enable more
accurate glaucoma diagnosis at a much lower cost, compared
to the present subjective evaluations of optic disc images or
expensive specialized imaging instruments.
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