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Abstract— Localizing blood vessels in eye images is a crucial
step in the automated and objective diagnosis of eye diseases.
Most previous research has focused on extracting the centerlines
of vessels in large field of view images. However, for diagnosing
diseases of the optic disk region, like glaucoma, small field
of view images have to be analyzed. One needs to identify
not only the centerlines, but also vessel widths, which vary
widely in these images. We present an automatic technique
for localizing vessels in small field of view images using multi-
scale matched filters. We also estimate local vessel properties
– width and orientation – along the length of each vessel.
Furthermore, we explicitly account for highlights on thick
vessels – central reflexes – which are ignored in many previous
works. Qualitative and quantitative results demonstrate the
efficacy of our method – e.g. vessel centers are localized with
RMS and median errors of 2.11 and 1 pixels, respectively in
700×700 images.

I. INTRODUCTION

Analyzing the structure and properties of blood vessels in

the eye is a crucial step in the diagnosis of eye diseases. To

diagnose glaucoma, for instance, clinicians examine blood

vessels in the optic disc region (shown in Fig. 1(b)) and

evaluate the location and change in their 3D structure and

widths over time. This assessment is tedious and subjective.

Hence, it is desirable to automate this process and make it

more objective. To this end, we propose and demonstrate a

technique that automatically localizes blood vessels in the

eye and also estimates local vessel properties – width and

orientation – along the length of each vessel.

Previous works on detecting vessels include use of

matched filters tuned to detect particular intensity structures

[2], [6], use of multiscale Gabor filters [8], use of image

filter outputs as inputs to classifiers [9], and symmetry and

asymmetry analysis in the Fourier domain [11]. In [3], eigen

values of the Hessian at every pixel are used to detect ridges

in the intensity structure. In [1] and [6], vessels are detected

by starting from seed points and tracing along vessels as

long as a model for vessel appearance is satisfied. These

works have largely focused on extracting the vessel network

in large field of view images, like the one in Fig. 1(a).

However, for diseases of the optic nerve, like glaucoma,

clinicians assess blood vessels in the optic disk (bright

elliptical area in Fig. 1(a)), which occupies only a small

portion of a conventional fundus image – e.g. 7% of the

Supported by NEI grant EY-017299, the Mackall Foundation Trust, and
Research to Prevent Blindness.

Mayank Bansal, Sujit Kuthirummal, Jayan Eledath and Harpreet
Sawhney are with Sarnoff Corporation, Princeton, USA {mbansal,
skuthirummal, jeledath, hsawhney}@sarnoff.com

Richard Stone is with the Scheie Eye Institute, University of Pennsylva-
nia, USA stone@mail.med.upenn.edu

(a) (b)

(c) (d)

Fig. 1. (a) Large field of view image of the eye. (b) Small field of view
image around the optic disc. (c) Vessel centerlines estimated using [9]. (d)
Vessel centerlines and boundaries estimated by our proposed approach.

image in Fig. 1(a). Consequently, small field of view images

(e.g. Fig. 1(b)) are used, where vessel widths vary widely –

from 3 to 33 pixels in 700×700 images. Most works have

not dealt with high resolution, small field of view images,

and/or such large variations in vessel widths.

Our approach builds upon the multi-scale matched filter

approach of Sofka and Stewart [9]. Their focus is on detect-

ing vessels in large field of view images. Our objective is

similar, but the emphasis is different. We aim to accurately

localize and characterize vessels: determine vessel center-

lines (curves along the center of each vessel) and estimate

local vessel properties (width and orientation) at every point

on the centerlines. Our focus is on diagnosing diseases like

glaucoma that, as noted earlier, requires analyzing small field

of view images. Such images have a wide range of vessel

widths which makes the problem challenging. In a wide field

of view image, like Fig. 1(a) where vessel widths do not

vary widely, detection might be equivalent to localization.

However, that is not the case for small field of view images

like Fig. 1(b). In their work, Sofka and Stewart [9] input

responses from matched filters to a learning algorithm to

determine which pixels lie on blood vessels and then use
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non-maximal suppression to generate centerlines. However,

accuracy and smoothness of the centerlines was not a goal of

their work. Accurate centerlines are necessary for correctly

visualizing and comparing blood vessel networks, both in 2D

and 3D.

Though our objective is different from Sofka and Stewart

[9], for comparison Fig. 1(c) shows the vessel centerlines

obtained using their approach. For this result we used code

from the authors. However, that implementation was trained

on large field of view images with a small range of vessel

widths. Therefore, to get reasonable results we had to scale

down the image by a factor of 4. This is the reason the

centerlines are sparse and appear quantized. Note that their

approach misses vessel segments with a central reflex – thick

vessel segments with a highlight. We explicitly handle such

vessel segments.

To summarize, we make the following contributions:

• We demonstrate a novel algorithm based on multi-scale

matched filters and ridge detection that accurately locates

centerlines of blood vessels in images which exhibit a wide

variation in vessel widths (Sec. II-A and II-B). Fig. 1(d)

shows an example where the centerlines are marked in red.

• For each pixel on the centerlines, we also estimate the

local properties of the vessel – width and orientation (Sec.

II-C). Some diseases like retinopathy of prematurity (ROP)

are characterized by significant dilation of vessels and

increase in their tortuosity. Quantitative measurement of

vessel properties can thus enable automatic and objective

diagnosis of such diseases.

• We also account for central reflexes which are ignored in

most works (Sec. II-D). If unaccounted for, these result in

incorrect estimation of vessel centerlines and local vessel

properties, especially in small field of view images.

II. AUTOMATIC VESSEL LOCALIZATION

A. Matched Filter based Vessel Detection

Blood vessels in the eye have a characteristic intensity

structure. They are darker than their surroundings. Also,

they have a Gaussian like intensity profile across the ves-

sel (normal direction) and are almost uniform along the

vessel (tangential direction) 1. To detect such structures,

several works have proposed using matched filters [2], [9].

A matched filter gives a high response when its orientation

and shape is similar to the intensity profile. To understand

its operation, consider a horizontal vessel with width w.

To detect this vessel, we can use a matched filter that is

a convolution of two 1D filters – Laplacian of a Gaussian

filter in the vertical direction (across the vessel) and a

Gaussian filter in the horizontal direction (along the vessel).

The first detects Gaussian-like intensity structures, while the

second smoothes responses along the vessel. We denote the

bandwidths for the two Gaussians as σn and σt, respectively.

We get maximal response for a pixel on the center of the

vessel – pixel on the centerline – when σn = ⌊w
2
⌋. To detect

1This is generally the case except for central reflexes on thick vessels.
We address such cases in Section II-D.

vessels with different widths, we use filters obtained by

varying σn; σt is kept fixed. To detect vessels with different

orientations, we apply the filter at different orientations.

B. Centerline Localization

Given the matched filter responses, at every pixel we pick

the maximum response over all scales σn to get a single

Maximal Response (MR) map. In addition, at each pixel

we record the scale and orientation corresponding to the

maximum response as the best scale si and orientation θi.

The centerline of a vessel can be identified from the MR map

by performing ridge detection [5] at a scale corresponding to

the width of that vessel. Ridge detection at other scales would

result in incorrect localization of the centerline. Therefore,

we perform ridge detection at multiple scales, where the

scales correspond to the same range of vessel widths used

for computing the MR map2. Of the ridges detected at a

particular scale, say σk, we keep ridges at only those pixels

i, whose best scale si lies in [σk − Tσ , σk + Tσ], where Tσ

is typically 3. The selected continuous ridge pixels form the

centerline of vessel segments at that scale.

The vessel segments detected at different scales are then

combined to get the final vessel network using a technique

guided by the intuition that vessel segments detected at the

correct scale would be longer than those detected at an

incorrect scale. We first sort the vessel segment centerlines

detected at all scales in descending order of length. From this

list, we add new segments to the final list, if less than 20%
of the new segment’s pixels overlap with segments already

in the final list. The final centerline pixels (xci, yci) along

with the corresponding best scales si and orientations θi form

the set: (xci, yci, wi, θi), which represents the localization of

the vessel centerlines and the local vessel properties. Here,

wi = 2 ∗ si + 1.

For all results in the paper we have used the same matched

filter parameters: σt = 6 (empirically determined), σn is

varied from 1 to 16 in increments of 1 (vessel widths can

vary from 3 to 33 pixels), and the filter is applied at 36

orientations (every 5◦).

C. Smoothing Estimated Vessel Properties

We can use vessel width wi and orientation θi estimated

for every centerline pixel (xci, yci) to trace out pixels on

vessel boundaries (xbi, ybi):

(xbi, ybi) = (xci, yci) ±
wi

2
(sin θi, cos θi). (1)

However, as can be seen in Fig. 2(b), individual estimates

of width and orientation are noisy, resulting in fragmented

vessel boundaries. One approach to refine or smooth these

estimates is to perform regression on them, as they are

expected to vary smoothly along a vessel. However, it is

unclear which global model best describes the variation of

these parameters. Hence, we use locally linear regression

with a regularizing prior. In particular, we use kernel ridge

regression [4].

2The scale σ used for ridge detection is 1

4
of the vessel width being

considered.
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Fig. 2. (a) Zoomed in portions of an image. (b) Vessel boundaries obtained
on using only matched filters (Sections II-A and II-B). (c) Vessel boundaries
obtained after regression on the local vessel widths and orientations (Section
II-C).

For each vessel segment, we perform two independent

kernel ridge regressions – one for the estimated widths and

the other for the estimated orientations – both as a function

of the coordinates of the corresponding centerline pixels. Let

ui denote one of N points in the domain of the regression

– coordinates of vessel centerline pixels (xi, yi) – and vi

denote the corresponding points in the range – estimated

width or orientation. Kernel ridge regression seeks a matrix

of regression coefficients W that minimizes the following

cost function for a point u in the domain:

C(u) =

N∑

i

|vi − WT ui|
2k(u, ui, σ) +

WT W

2λ
, (2)

where, k(u, ui, σ) is the Radial Basis Function (RBF) kernel

with standard deviation σ and λ controls the influence of the

prior – the second term of the equation – which measures

the smoothness of the regression fit. As shown in [4], the

‘fitted’ estimate obtained on minimizing the cost function in

Equation 2 is given by

v̂i =

N∑

j

αijk(ui, uj , σ)vj , (3)

where α is the matrix (K+I/λ)−1, K is the matrix obtained

by evaluating the pairwise RBF kernel for all input points

in the domain, and I is the identity matrix. The fitted v̂ are

a weighted linear combination of the inputs vi, where the

weights are determined by the distance between points in

the domain.

Fig. 2(c) shows the vessel boundaries obtained on using

the widths and orientations obtained after regression, traced

out as per Equation 1. As one can see, the vessel boundary

contours are smooth and nicely follow the real boundary.

For all the results in the paper, we have used the same

parameter values for regression: λ = 1 for both vessel

width and orientation regressions, σ2 = 0.1 for the width

regression, and σ2 = 0.02 for the orientation regression. For

each regression, the domain (u) and range (v) values were

normalized using a scale factor to be in the range [0, 1].

D. Vessels with a Central Reflex

Thick vessels sometimes have highlights in the center

called the central reflex. Fig. 3(a) shows one such example.

Such vessel regions do not fit the assumption of Gaussian

variation of intensity across the vessel as described in Section

II-A. Consequently, these are not detected by the matched

(a) (b) (c) (d)

Fig. 3. (a) Zoomed in portion of vessel with central reflex. (b) Vessels
localized without accounting for central reflex. (c) Detected central reflex
pixels are shown in white (d) Vessel localized after accounting for central
reflex.

filter. Most previous works do not account for the effects of

the central reflex, since they deal with low resolution, large

field of view images. However, in high resolution or small

field of view images, central reflex causes errors, as can be

seen in Fig. 3(b). In particular, the darker vessel regions on

both sides of the reflex get incorrectly detected as one or

two separate vessels. Vermeer et al. [10] proposed combining

two such incorrect detections into a central reflex vessel

detection using some heuristics. Narasimha-Iyer et al.[7] pro-

posed detecting vessels with central reflex by incorporating

a generalized dual-Gaussian model for the intensity profile

of the vessels into a robust hypothesis testing framework.

In order to be able to correctly detect and localize vessels

with a central reflex, we adopt the following workflow. Given

the input image, we first detect pixels on central reflexes and

then eliminate them by filling-in with intensities interpolated

from neighboring pixels. This new filled-in image is then

processed by our matched filter based algorithm described

in Sections II-A, II-B, and II-C. Though the filling-in does

not necessarily produce a Gaussian-like intensity structure

across vessels, we have found that the matched filters are

able to correctly detect them.

We identify central reflex regions by exploiting their char-

acteristic intensity structure. They typically have an intensity

peak in the center, with dark vessel regions around them,

which in turn are surrounded by brighter pixels on the retinal

surface. That is, the center pixels form a ridge, while the

surrounding dark vessel regions form valleys. (See Fig. 3(a)).

To detect such intensity structures we perform ridge detection

on the intensity image, which gives ridges at the central reflex

pixels. To eliminate false detections, on the ridge response

image we select only those ridges which have symmetric

valleys (darker vessel regions) around them. This structure

is localized using the same match filter of Section II-A

applied at different scales and orientations. Fig. 3(c) shows

the central reflex pixels detected using this approach, while

Fig. 3(d) shows the vessel being correctly detected after

filling-in the central reflex pixels using cubic interpolation

of neighboring intensities.

III. RESULTS

The top row of Fig. 4 shows small field of view images

of the optic disk region from 3 different eyes. The results

of our technique are shown in the bottom row – the vessel
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Fig. 4. (Top) Input images. (Bottom) Vessel centerlines (red) and boundaries (green) estimated by our technique.

TABLE I

RMS AND MEDIAN ERRORS, IN PIXELS, IN CENTERLINE LOCALIZATION

FOR VESSELS IN 10 IMAGES.

Thin Vessels Thick Vessels All Vessels

RMS 1.853 2.182 2.112
Median 1.000 1.000 1.000

centerlines are in red, while the boundaries are in green.

In addition to the steps described in Section II we have

performed a simple check, inspired by [9], to eliminate

false detections. For every detected centerline pixel, the

corresponding boundary pixels (Equation 1) should lie on

edges and the gradient direction at the boundary pixels

should be close to the orientation at the centerline pixel.

We eliminate a vessel segment if a majority of its pixels fail

this test. This simple test eliminates several false positives,

especially on the optic disk boundary. Note that our approach

does not detect vessel bifurcations, since matched filters do

not ‘fire’ at such intensity structures. Consequently, vessels

are split up at bifurcations. We intend to address this splitting

of vessels in future work.

For quantitative evaluation, we compared the estimated

centerlines in 10 images with handmarked centerlines. The

images are 700×700 pixels. Table I shows the root mean

square (RMS) and median errors in localizing vessel center-

TABLE II

MEAN AND MEDIAN ERRORS IN ESTIMATING THE WIDTHS (IN PIXELS)

AND ORIENTATIONS (IN DEGREES) OF VESSELS IN 10 IMAGES.

Thin Vessels Thick Vessels All Vessels

Width Mean 1.461 3.320 2.850
Median 1.089 2.430 2.023

Orientation Mean 10.587 8.491 9.021
Median 6.995 5.969 6.264

lines for thin, thick, and all vessels. In our evaluation, vessel

segments with widths less than 9 pixels are considered thin,

while segments with widths between 9 and 33 pixels are

considered thick. The low errors – ∼ 2 pixels – attest to

our approach’s accuracy. It should be noted that since the

groundtruth was marked manually, errors of the order of a

pixel are to be expected in the groundtruth as well.

To evaluate the accuracy of the estimated vessel proper-

ties,we randomly selected a large number of points on vessel

centerlines in 10 images and had users mark the widths and

orientations of the vessels at those points. These groundtruth

vessel properties were then quantitatively compared to the

vessel properties estimated by our algorithm, the results of

which are also shown in Table II. We would like to point out

that since boundaries of vessels subtly fade into the back-

ground retina, marking them is highly subjective. Marking

vessel orientations is even more subjective especially if the
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Fig. 5. Views of the 3D vessel network, obtained using stereo matching, of the eye shown in Fig. 1(b).

vessels are curving. Consequently, errors in the groundtruth

for widths and orientations are expected.

IV. CONCLUSION

We present an automatic technique for localizing blood

vessels in eye images with high accuracy. Our approach

accounts for vessels with central reflex and also estimates the

local width and orientation of vessels. Accurate centerlines

enable us to correctly visualize vessel networks. Fig. 5 shows

views of the 3D vessel network obtained by computing

stereo disparities for the centerline pixels shown in Fig. 1(d),

given a pair of eye images. For this we used normalized

cross correlation matching with fixed windows. In future,

we would like to use the estimated local vessel properties to

adapt the widths and orientations of matching windows. Such

an adaptive scheme should enable superior 3D reconstruction

of vessels. Future work will also evaluate using the estimated

local properties for diagnosing retinal vascular diseases like

retinopathy of prematurity (ROP), which is characterized by

dilation of vessels and increase in their tortuosity.
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