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Abstract

We propose a purely geometric correspondence-free ap-
proach to urban geo-localization using 3D point-ray fea-
tures extracted from the Digital Elevation Map of an urban
environment. We derive a novel formulation for estimat-
ing the camera pose locus using 3D-to-2D correspondence
of a single point and a single direction alone. We show
how this allows us to compute putative correspondences
between building corners in the DEM and the query im-
age by exhaustively combining pairs of point-ray features.
Then, we employ the two-point method to estimate both the
camera pose and compute correspondences between build-
ings in the DEM and the query image. Finally, we show
that the computed camera poses can be efficiently ranked
by a simple skyline projection step using building edges
from the DEM. Our experimental evaluation illustrates the
promise of a purely geometric approach to the urban geo-
localization problem.

1. Introduction

In this paper, we study the challenging problem of geo-

locating a street-level image using only the corners and

roof-line edges of the buildings visible in the image and

matching them geometrically to a database of 3D corners

and direction vectors extracted from an elevation map with-

out using any appearance information from the database.

Recent work on geo-localization using a model database

has relied largely on rendering-based techniques [12, 10, 1].

Typically, these techniques render the 3D model on a uni-

form grid in the ground-plane, compute features for each

rendering and then match these against the query features

to retrieve candidate locations. While these techniques have

proven efficient and effective for geolocating in a mountain-

ous terrain [1], their adaptation to urban environments has

not had the same level of success. The reason for this is the
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computational overhead of rendering the building models at

a fine enough resolution such that the rendering can closely

match the query image.

In this paper, we take a different approach to the ur-

ban geolocalization problem. Instead of pre-rendering the

model, we extract purely geometric entities from the model

and the query image and then use them directly to solve for

the camera pose. To handle this combinatorial problem in

a tractable manner, we propose a novel framework for cor-

respondenceless pose-estimation in a 3D-to-2D setup that

employs a minimal solver without suffering from the com-

binatorial explosion typical in such setups. In particular, we

employ the two-point method for estimating the pose of a

calibrated camera with known vertical direction in the im-

age. Without a set of extracted 3D-to-2D correspondences,

employing even a 2-point algorithm for pose estimation is

prohibitively expensive. In a geolocation setup, assuming

we have identified m building corners in the query image

and have n 3D-building corner points in a database, the cost

of testing all minimal configurations is O(m2n2). In addi-

tion, the number of correct correspondences is at most m
which makes any direct voting-based method infeasible.

Therefore, we propose a stratified approach that uses a

lower number of constraints to compute a partial solution

which is then used to generate putative correspondences on

which the 2-point method can be applied. Specifically, first

we use a single point and line direction (ray) correspon-

dence to solve for the camera pose partially. In this par-

tial solution, the camera rotation (pan) is recovered and the

translation is expressed as a locus along a 3D-line segment.

We show that the projection of 3D points using this para-

metric camera pose generates line-segments in the image.

The perpendicular distance of the image points from these

segments can be used to identify putative correspondence

of the 2D-points with the 3D-points corresponding to these
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line segments. This is a novel insight that uses a partial solu-

tion to establish putative correspondences without using any

appearance information. The standard 2-point algorithm

can now be applied in a RANSAC setting to this putative

set to generate a hypothesis camera pose. In this framework,

we test at most O(m2n) minimal configurations which is a

substantial cost saving in typical problem instances where

n >> m. In the geolocalization setting we address in this

paper, n corresponds to the total number of building corners

in a database which is substantially larger than the number

of building corners detected in a single query image (m).

Our paper distinguishes from the state of the art in the

following contributions:

1. A novel formulation for vertical pose estimation using

a point-line pair.
2. Degeneracy conditions for the point-line problem.
3. A novel framework for stratified pose estimation using

point-line and 2-point algorithms.
4. An application of this framework to geo-localization

without appearance correspondences.
5. The fact that we avoid any visibility information or

rendering.

2. Related Work
Image-based geo-localization has largely been ap-

proached as an appearance matching problem between a

query image and a database of geo-tagged images. Za-

mir and Shah [14] employed a structured dataset of 360◦

panoramic imagery from Google Street-view to create an

index of SIFT features which is used to geolocate a query

image. However, their method requires an extensive dataset

to be available and be indexed. SIFT feature matching

was also employed for urban localization by Zhang and

Kosecka[15]. Hays and Efros[3] propose a data-driven ap-

proach to single-image localization which also uses scene

features a large dataset. More recent work on image-based

geolocalization has also looked at using non-ground-level

database imagery. Although direct feature correspondence

is not employed in these approaches, appearance informa-

tion is still used either in a bag-of-words or a feature learn-

ing framework. Examples of these two frameworks in-

clude work on using self-similarity bag-of-words features

for matching to oblique aerial imagery [2], multiple feature

learning for matching to satellite and land cover attribute

imagery [8] and static camera localization by correlating

with satellite imagery [5].

Digital elevation models (DEM) and 3D models of the

environment have shown promise for the geo-localization

problem as well. Baatz et al. [1] described a framework for

geolocating queries in a mountainous terrain by matching

against skylines pre-rendered from digital elevation models.

Ramalingam et al. [11] present a formulation for comput-

ing camera pose using minimal configurations of points and

lines, and use this to geolocate a query using the 3D model

of a city. However, their approach demands the availabil-

ity of an initial correspondence between one query image

and the 3D model. This correspondence is used to setup

3D-to-2D constraints which are then propagated to a new

query image using image-to-image appearance matching.

Thus, they do not address the geo-localization problem in

the traditional sense and implicitly use image appearance.

Skylines precomputed from a 3D model have been used for

urban geolocalization of an omni-camera in [12]. However,

the approach has shown more promise for keeping track of

the camera location rather than for initialization.

In terms of the problem setup, our work is most closely

related to the urban geo-localization setup of Matei et al.
[10]. They used a LIDAR scan of the environment to create

a DEM which is rendered exhaustively from multiple lo-

cations and viewpoints. Features extracted from these ren-

derings are matched against query features to generate can-

didate camera locations. In this work, we employ a DEM

as the starting point of our database as well. However, in-

stead of rendering apriori in a quantized pose space, we ex-

tract sparse PointRay features which are purely geometric

and allow us to compute candidate query poses without any

appearance matching. We verify each candidate pose by

comparing the building skyline visible in the query with the

skyline rendered from the candidate viewpoint. This ren-

dering step is very efficiently performed by linear algebraic

means and involves projection of building contours from the

DEM and does not need any depth culling computation.

Closed-form minimal solutions to the absolute pose

problem for a vertical camera were first proposed by

Kukelova et al. [7]. We propose a novel formulation for the

geo-localization problem using this minimal solver and de-

rive a stratified approach that can work in a correspondence

and appearance-free setup by solving for the partial pose us-

ing a point-ray correspondence. The 2-point absolute pose

framework is also employed by Saurer et al. [13] for visual

odometry under vertical camera assumption. They also con-

firm that the vertical direction measurement from an off-the-

shelf IMU is accurate enough for the 2-pt pose estimation

algorithm.

Correspondenceless estimation of pose or scene struc-

ture has been addressed in [9]. However, their method relies

on appearance matches between SIFT descriptors while our

approach works purely with geometric entities.

The paper is organized as follows. In section-3, we for-

mulate the geometric problem for estimating the pose of a

vertical calibrated camera in terms of minimal set of points

and direction correspondences. Section-4 presents details of

our proposed algorithm for geo-localization including pro-

cedures for detecting query and database features. Section-

5 presents experimental results.
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3. With Correspondence Information
3.1. Preliminaries

Let p̄ = (ū, v̄, 1)T be the (homogeneous) image projec-

tion of a 3D point P = (X,Y, Z)T . Then the projection

equation is given by:

K(RP+ t) ∼= p̄ (1)

where K is the camera internal matrix and R and t =
(tx, ty, tz)

T are the camera rotation and translation respec-

tively relative to the world. Defining p = K−1p̄ and con-

verting the projective equivalence to equality by taking a

cross product, we get:

[p]×(RP+ t) = 0 (2)

where p = (u, v, 1)T are the normalized coordinates of the

image point and [p]× is the skew-symmetric matrix repre-

senting cross-product with the vector p.

If the Y-axis of the camera is aligned with the Y-axis (and

the gravity vector in the geo-localization setup) of the world

coordinate system, the rotation matrix R can be simplified

to:

R =

⎛
⎜⎝

1−q2

1+q2 0 −2q
1+q2

0 1 0
2q

1+q2 0 1−q2

1+q2

⎞
⎟⎠ (3)

where q = tan(θ/2) and θ is the unknown camera pan

angle. Substituting in equation (2) and denoting q =
(q2, q, 1)T , we get:

f(u,P)Tq = (ut̄z − t̄x) (4)

g(v,P)Tq = (t̄y − vt̄z) (5)

where,

f(u,P) =

⎛
⎝

uZ −X
−2(uX + Z)

X − uZ

⎞
⎠ , g(v,P) =

⎛
⎝
−Y − vZ

2vX
vZ − Y

⎞
⎠

(6)

and t̄ = (t̄x, t̄y, t̄z)
T = (1 + q2)t.

3.2. Correspondence of two points

Proposition 1. Given correspondence of any two points,
not in a degenerate configuration, there are two possible
solutions for the camera pose[7].

Proof. Let P1 = (X1, Y1, Z1)
T and P2 = (X2, Y2, Z2)

T

be the two 3D points and (u1, v1)
T and (u2, v2)

T be the

corresponding image points. Then, from equation (4), we

get the following pair of equations:

f(u1,P1)
Tq = (u1t̄z − t̄x) (7)

f(u2,P2)
Tq = (u2t̄z − t̄x) (8)

Figure 1. Degenerate cases for the two point method

Eliminating tx between equations (8) and (7), we get:

(f(u1,P1)− f(u2,P2))
Tq = (u1 − u2)t̄z (9)

Similarly, from equation (5), we get:

g(v1,P1)
Tq = (t̄y − v1t̄z) (10)

g(v2,P2)
Tq = (t̄y − v2t̄z) (11)

which, after eliminating t̄y gives:

(g(v1,P1)− g(v2,P2))
Tq = (v2 − v1)t̄z (12)

Eliminating t̄z from equations (9) and (12), we get a

quadratic in q which can be solved to get two solutions for

the camera rotation parameter q. Substituting this value in

either equation (9) or (12), we can solve for t̄z and then

for t̄x and t̄y from the remaining equations leading to two

solutions for the camera pose.

Degeneracies. The two-point method is degenerate if and
only if either a) the two points lie in the XZ-plane passing
through the camera center, or b) the two points lie on the
same vertical line.

Proof. Assume two points A and B at known positions in a

3D world frame. It is well known that the locus of camera

centers O which view these points at the same relative non-

zero angle (relative bearing) is a toroid. This is easy to see

since in the 2D case the locus is a circle which when rotated

about axis AB becomes a toroid. It is also known that with

one more point (P3P), three toroids are created which in the

general case intersect at 8 points.

If the third point is at infinity then we have the case of

a known direction g w.r.t. the world (like gravity). As-

sume that the angle between the known direction and the

ray to A is α. Then the locus of camera centers that

see A under angle α w.r.t. the known direction is a cone

((X−A)
T
g)2 = (X−A)

2
cos2 α. A second cone is cre-

ated for the constraint that point B is seen under angle β
w.r.t. the known direction g. In the general case, the toroid

intersects with the two cones in two points.

This is not the case when the cone degenerates to a plane

(case 1) or when the intersections of each cone with the

toroid are identical (case 2), yielding in both cases a one-

parameter family of solutions (Fig. 1).
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Case 1: When the angle α is 90◦, the cone degener-

ates into a plane. This is not a problem when this happens

with one of the points since the number of intersections of

a toroid, a cone, and a plane, is finite. In the case of gravity,

this is the case when one of the two points is in the middle

row of the image. However, if this happens to both points

α = β = 90◦ then the two planes coincide and the intersec-

tion with the toroid is a circle. This is the only case when the

intersection of the two “cones” is a two-parameter solution.

Case 2: If the line AB happens to be parallel to the di-

rection of reference, then the two cones intersect at a circle.

This circle is contained in the toroid because at each posi-

tion of this circle the relative bearing AÔB is constant and

equal to |β − α|. This is not the case with points in the

general intersection between two cones because in this case

the angles α and β are spanned in different planes. This is

also the only case (except case 1) where the intersection is

a curve because this is the only case when the intersection

between the cones is a circle. In any other case the inter-

section between two cones is a conic section and the only

conic section satisfying the constancy of relative bearing is

the circle.

Proposition 2. Given correspondence of two points at the
same elevation from the ground, the camera location can
be determined without the knowledge of the elevation of the
points up to an unknown ty i.e. the camera elevation will
remain undetermined.

Proof. Let the unknown elevation be Y = Y1 = Y2. Then,

from equation (6), g(v1,P1)− g(v2,P2) is independent of

Y . Since equation (9) is also independent of Y , we can

now solve for q and then t̄z and t̄x using the same steps as

in proposition (1). From equation (10) (or (11)), ty can be

expressed as follows:

ty = v1tz +
q2(−v1Z1) + q(2v1X1) + v1Z1

1 + q2
− Y (13)

This places the camera vertical translation ty at a fixed

offset relative to the unknown elevation Y of the 3D points.

3.3. Correspondence of one line

Proposition 3. For a camera with its vertical axis aligned
with the world vertical, a single line correspondence is suf-
ficient to determine two possible solutions for the unknown
camera rotation (pan angle).

Proof. Let L = (Lx, Ly, Lz)
T be the direction vector of a

3D line and n = (n1, n2, n3)
T be the homogeneous rep-

resentation of the corresponding line observed in the im-

age. Then, the following result expresses the relationship

between n, L and the rotation matrix R of the camera in the

world coordinate system:

nTRL = 0 (14)

For a vertically aligned camera, the rotation matrix R can

be set from equation (3) leading to the following quadratic

equation in the unknown camera rotation q:

lTq = 0 (15)

where,

l = (−Lxn1 + Lyn2 − Lzn3, 2Lxn3 − 2Lzn1,L
Tn)T

(16)

The above equation leads to two different solutions for the

unknown q.

Degeneracies. For a camera with its vertical axis aligned
with the world vertical, estimation of the camera rotation
(pan) using a line correspondence is degenerate if and only
if either a) the line is vertical in the world or b) the line is
in the XZ-plane passing through the camera center.

Proof. The equation (15) is degenerate when the quadratic

coefficients l are all zero. Setting l = 0 leads to the follow-

ing four conditions: a) L = 0, b) n = 0, c) {n2 = 0, Lz =
0, Lx = 0}, and d) {n1 = 0, n3 = 0, Ly = 0}.

In (c), n2 = 0 ⇒ n = (α, 0, β), which implies that the

line is vertical in the image. Also, Lz = Lx = 0 implies

that it is vertical in the world as well.

In (d), n1 = n3 = 0 implies the image line v = 0 which

is a horizontal line passing through the image center. This

implies that Y = −ty = cy from the camera projection

equation. Coupled with the condition Ly = 0, this is a line

in the XZ-plane passing through the camera center.

3.4. Correspondence of a point and a line

Proposition 4. Given the correspondence of a point and 3D
direction vector, the camera pose can be determined upto an
unknown location on a 3D line.

Proof. From the line correspondence, first we estimate the

unknown camera pan angle using proposition (3). Then, we

use the point correspondence in equations (7) and (10) to es-

tablish the locus of the camera center. Substituting the val-

ues of the known point coordinates and the estimated value

of q, we get equations of the form:

tx = u1tz + α (17)

ty = v1tz + β (18)

where α and β are functions of (u1, v1) and (X1, Y1, Z1)
and are known. Thus, the locus of the camera translation t
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is a 3D line.

t =
ty
v1

⎛
⎝
u1

v1
1

⎞
⎠+

1

v1

⎛
⎝
αv1 − βu1

0
−β

⎞
⎠ (19)

with orientation given by the vector (u1, v1, 1)
T .

Degeneracy. The above formulation is degenerate when

v1 = 0 (which is when the point P1 is on the XZ-plane

passing through the camera center). In this case, we can

solve for ty directly as ty = β and the locus of the trans-

lation is given by equation (17). This locus is a line on the

XZ-plane passing through the camera center. Note that in

this case the camera location is not constrained even with

the knowledge of the camera height.

Corollary 1. A camera with known rotation and location on
a 3D line projects another 3D point to a line in the image
which passes through the first point.

Proof. Let P2 = (X2, Y2, Z2)
T be the second 3D point

(first point being the reference point used to determine the

locus of the camera location). Its projection in the image is

then given by:

p2
∼= RP2 + t (20)

Substituting the locus from equation (19), we get:

p2
∼= R

⎛
⎝
X2

Y2

Z2

⎞
⎠+

ty
v1

⎛
⎝
u1

v1
1

⎞
⎠+

1

v1

⎛
⎝
αv1 − βu1

0
−β

⎞
⎠ (21)

The point p2 traces a line in the image as ty is varied. As

ty → ∞, p2 → (u1, v1, 1)
T . This corrolary is depicted on

a real example in Fig. 16.

4. Correspondenceless Geolocalization
With the machinery established in the previous section,

we are in a position to describe an algorithm for geolocating

a street-level image using a database of 3D building corners

extracted from a Digital Elevation Map (DEM) of the envi-

ronment.

Let Pj ∈ �3 with j ∈ {1, . . . , n} be the set of n 3D

building corners extracted from the DEM. Each corner is

also associated with the 3D direction vector Lj ∈ �3 along

the roofline of the building 1. The pairing of each point

and the direction vector is referred to as a PointRay feature.

The set of PointRay features extracted from the DEM is rep-

resented by the database feature set D = {(Pj ,Lj), j =

1Each corner is associated with two roofline edges and hence two dif-

ferent direction vectors. Thus, each corner is represented twice in the set

{Pj} once for each direction vector.

1, . . . , n}. An algorithm for creating this feature set from a

DEM will be discussed in section-4.2.

Similarly, we process the query image to detect a number

of building corners and associate them with roofline edges

(in the image) to generate a set of 2D PointRay features

(pi, li) where pi ∈ �2 is the point coordinate and li ∈ �3

are the line coefficients. This leads to the query feature

set Q = {(pi, li), i = 1, . . . ,m}. An algorithm for cre-

ating this feature set from a query image will be discussed

in section-4.2.

We begin by describing an algorithm that naively uses

the 2-point algorithm in Proposition-1 to recover camera

pose using D and Q.

Algorithm-0. We select a pair of features from Q and a

pair of features from D and employ the 2-point algorithm to

compute pose hypothesis (R, t). Then, we project all 3D-

points Pj into the image using the computed camera (R, t),
and count the number of image features pi for which a 3D-

point projects within a threshold ε. The number of inliers

can be used as a score for this pose. Since there is no apri-

ori correspondence information, the above process has to

be repeated for all potential minimal (2-point) configura-

tions i.e.
(
m
2

)(
n
2

) ≈ O(m2n2) times. Clearly, a skyline

rendering-based verification step is not feasible with such a

large candidate pose space.

4.1. Stratified Geo-localization Algorithm

We select a single feature from Q, associate it with

a single feature from D and employ the point-line algo-

rithm in Proposition-4 to compute a pose hypothesis (R, tα)
(α parameterizes the 3D camera height). Then, similar

to Algorithm-0, we project all 3D-points Pj into the im-

age using the computed camera (R, tα). However, in this

case, by corrolary-1, each point projects to a line-segment

in the image. For each point pi, we search for the clos-

est line-segment (within a reprojection error threshold ε =
10 pixels) and associate the corresponding 3D point with

this query feature. This set of putative correspondences is

now used to solve the 2-point problem (Proposition-1) in a

RANSAC-based setting to generate a refined pose. Similar

to Algorithm-0, a score can be associated with this pose by

counting the number of inliers or by a separate scoring func-

tion. The above process is repeated for each pair of features

from Q and D i.e. mn times.

Algorithm-1 describes the proposed geo-location algo-

rithm. The function PosePointRay(pi, li,Pj ,Lj) applies

Proposition-4 to recover the camera rotation R and transla-

tion locus tα from a single point and direction correspon-

dence. The function Project(Pk,K,R, tα1 , tα2) projects

the 3D-point Pk using the camera matrices K[R|tα1 ] and

K[R|tα2
] to a line segment in the image sk.

The parameters α1 and α2 specify an interval for al-

lowable camera height. In our implementation, we keep
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this fairly loose to compensate for image noise and vari-

able ground elevation at each location. Our implementation

uses α1 = Yground − 5m and α2 = Yground + 20m where

Yground is the estimated average ground elevation obtained

from the DEM.

The for loop on line-number-7 builds a set of cor-

respondences C by looking for the nearest line-segment

from the set {si} for reach query point pk. The function

Nearest(pk, {si}, ε) returns the index of the 3D-point that

is closest.

The function PoseTwoPoints(pi,Pj , C) uses the two-

point algorithm in Proposition-1 using (pi,Pj) as a fixed

correspondence and successively trying out each candidate

correspondence from C. For each choice, the algorithm pro-

duces two solutions from which the rotation which is closer

to the original estimate R is selected. Since C can have at

most m elements, each call to PoseTwoPoints() invokes

Proposition-1 at most m times. However, it outputs only

one solution pose (R′, t′) – the pose for which maximum

number of elements of C have a low image projection error.

The run-time complexity of this algorithm is O(m2n)
and it can produce an output list P0 of length at most 2mn.

Next, we describe the functions Filter and ScoreAndRank.

4.1.1 Candidate Filtering

The candidate pose list P0, in the worst case, can be of

length 2mn. Since the camera height was restricted to a

fairly loose interval using the parameters α1 and α2, there

are potentially a large number of recovered poses which do

not agree with the ground-level at the lat-long location of

the pose. However, the function Filter removes such poses

and generates the output list P1 as follows. First, we fil-

ter out all camera poses that land outside the extent of the

DEM. Next, we look at the XZ-location of each camera

pose and look-up the ground elevation from the DEM. If

the camera height cy is within a threshold hcamm of the

ground elevation then we keep this pose, otherwise we filter

it out. The threshold hcam allows us to seamlessly model

specific geo-localization scenarios. For example, when the

query imagery is only taken by walking pedestrians, we can

set this threshold to say hcam = 2.5m to filter out poses

with camera placed higher than 2.5m.

4.1.2 Scoring and Ranking

For geo-localization purposes, each pose (R, t) in the list

P1 needs to be associated with a score so that a ranked list

can be created and further verified either using appearance

or using a specialized rendering-based matcher. We propse

two algorithms for scoring each pose and present experi-

mental comparison of this two methods in section-5.

Inlier edge scoring. For this scoring step , we look at

the set of inlier correspondences that generated each pose

input : Query features {(pi, li), i = 1, . . . ,m}.

Database features

{(Pj ,Lj), j = 1, . . . , n}.

parameters: Camera height interval [α1, α2].
output : Camera pose set

P = {(Rk, tk), k = 1, . . . ,≤ 2mn}
with associated scores Sk.

1 P0 ← ∅;

2 for i ← 1 to m do
3 for j ← 1 to n do
4 (R, tα) ← PosePointRay(pi, li,Pj ,Lj);

5 sk ← Project(Pk,K,R, tα1
, tα2

)
∀k ∈ {1, . . . , n};

6 C ← ∅;

7 for k ← 1 to m do
8 fk ← Nearest(pk, {si}, ε);

9 C ← C ∪ (pk, Pfk);

10 end
11 (R′, t′) ← PoseTwoPoints(pi,Pj , C);

12 P0 ← P0 ∪ {(R′, t′)};

13 end
14 end
15 P1 ← Filter(P0);

16 P ← ScoreAndRank(P1);

Algorithm 1: Proposed Geo-localization Algorithm

(R, t). Since each building corner is associated with 3

building edge directions, we project these lines for each

inlier into the image and score the correspondence based

on the edge-strength accumulated by the lines in the query

gradient map. The sum of scores over all inlier correspon-

dences constitutes the score for the pose. Fig. 2(c) shows

an example of the line projection from the inlier correspon-

dences. The intuition behind this scoring strategy is to pe-

nalize poor features detected on the query which may not

have enough edge-support when measured using projected

building edges.

Skyline match verification. The skyline-based verifica-

tion step is similar to the use of urban-skylines for pose es-

timation by Ramalingam et al. [12]. However, instead of

pre-rendering the urban skylines from the continuous pose

space, we only render the skyline at the camera poses in the

filtered list. In addition, this rendering step is very efficient

as it can be carried out using linear algebra alone. We take

the 3D point set corresponding to the DEM edge map E (see

section-4.2) and project it to the image using the camera

matrix. Keeping only the points which fall into the query

image, we determine the highest point that projects at each

image column by a simple linear search. This gives us the

v coordinate for the rendered skyline at each column of the

image. Fig. 2(d) shows an example of the skyline rendered

from a correctly computed pose. For the query image, we
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directly use the sky-mask from the Geometric Context [4]

algorithm to generate a skyline. At this stage, we can use

the two skylines to refine the estimated pose. However, in

this paper, we only use the skylines to generate a score for

each pose – the scoring function measures the area overlap

between the sky regions from the rendered and the query

image using an intersection over union criterion.

Fig. 2 walks through the entire algorithm on a query from

our evaluation set.

4.2. Feature Extraction

Database Features. The database feature set D is gener-

ated from a 3D-model or a LIDAR scan as follows. First,

we project the data using an orthographic camera onto the

ground-plane and keep the height information of the high-

est point at each pixel. This generates a digital elevation

map (DEM) with the elevation information represented by

the pixel intensity. We use the median elevation within the

DEM as an approximate ground elevation estimate Yground

and use it to mask out the ground regions. This gener-

ates building regions as disconnected components which

are futher processed one at a time. Within each compo-

nent, we use the video-compass [6] algorithm to detect long

line-segments, associate each line-segment with the eleva-

tion information from the DEM underneath, and then inter-

sect them pairwise to generate corner locations in the DEM

image. Thus, each corner is associated with a 3D location

Pj in the world coordinate system. The line-segments that

intersect at this corner are converted to direction vectors Lj

thus generating pairs (Pj ,Lj). The set of pairs from all

building components is collected into the set D of database

features. The canny edge map used for line extraction is

also associated with elevation information from the DEM

and is stored as a set of 3D coordinates E for use in the sky-

line rendering step of our algorithm. Note that the above

algorithm is much simpler than the typical processing that

is required to extract full building models from a DEM[10].

This is a distinct advantage of our PointRay feature which

does not need full building outlines to be extracted.

Query Features. Before computing the query features,

we rectify the query image (to a vertical camera orienta-

tion) using vanishing-points. We use the video-compass al-

gorithm from [6] to fit line segments to the canny edge-map

of the query image. This gives us a set of candidate line-

segments from which we select candidate “sky-hugging”

segments by scoring each segment using a sky-probability

map computed by the Geometric-Context algorithm [4].

The resulting segments are then intersected pairwise to gen-

erate candidate building corners. For each corner pi, we

thus also obtain the line segment(s) li that generated this

corner and are along building rooflines by construction. In

practice, for each corner we also verify its proximity to the

end-points of the intersecting line-segments, and remove
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Figure 3. DEM from Ottawa with query locations overlaid. Each

location is shown as a red circle with green arrows depicting the

look-at vectors corresponding to each query image. The inset

shows the elevation distribution for the query set.
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Figure 4. Geo-localization performance evaluation.

multiple corners by non-maximal suppression. The pairs

(pi, li) that pass the verification are collected into the final

feature set Q. Fig. 2(a) shows an example of the extracted

PointRay features.

5. Experiments
We use the publicly available dataset of aerial LIDAR

scans of Ottawa, Ontario, Canada. We created a DEM at a

ground resolution of 0.25m per pixel for a 1Km × 0.5Km

area from this data (see Fig. 3) and ran the feature extraction

algorithm (section-4.2) resulting in approximately n = 600
3D PointRay features.

For query data, we use Google Street-view imagery

downloadable at specified latitude-longitude locations. 50
images from several locations within the extent of the DEM

map at several different camera pan angles were down-

loaded (see Fig. 3 for the query pose variety). The cam-

era tilt was set at zero degrees to simulate a vertical camera.

The camera internal parameters were fixed at a field-of-view

of 90◦ and a resolution of 640 × 640. This is the maxi-

mum available resolution from Gooogle for general users

and the poor quality (pixellation, ringing, blur) of this im-

agery poses numerous challenges for line and corner ex-

traction algorithms. For each query, we automatically ex-

tract the query features using the algorithm in section-4.2.

We found that detection of PointRay features is quite robust

to image quality issues and is most severely impacted by

poor sky segmentation from the Geometric Context algo-

rithm when it gets confused by tall construction equipment

in the scene.
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(a) PointRay features (b) Locii of projection

(c) Inliers from the two-point fit (d) Skyline match verification (e) Localization on the DEM

Figure 2. Query processing: a) Each red-dot and green-arrow pair make up one PointRay feature (pi, li). b) The PointRay feature (pi, li) shown in red

when corresponded with the correct 3D PointRay feature from the database results in a camera pose locus. By corollary-(1), the camera in this locus maps

the remaining database corners to line segments shown in yellow and cyan. The cyan segments represent the inlier set C because of their proximity to the

query corners (shown as green circles). We show two cases here where different locii are created by using a different (but correct) reference PointRay feature

correspondence. c) Green circles denote the inliers after the two-point method is applied to C; the green lines depict projected 3D edges using the computed

camera pose. d) DEM contours rendered using the hypothesis camera pose generate the green skyline which matches correctly with the perceived skyline.

e) DEM showing the reference corners (blue +), recovered camera pose (yellow), ground-truth camera pose (red) and the recovered inliers (green).

For each query image, we run our geo-localization al-

gorithm and generate the list of candidate poses P sorted

by decreasing scores. Given the precise ground-truth loca-

tion and orientation for each query, we label as true-positive

each returned pose that is within a distance threshold τ of

the ground-truth location and has a look-at vector within

25◦ of the ground-truth rotation. Fig. 4 presents the re-

sults for three different distance thresholds, τ : 5m, 10m and

20m. For each value of top-K, the precision is measured

as the fraction of queries that returned a true-positive pose

within the first top-K elements of the output list P . The

two curves within each plot compare the results of using

the two scoring strategies outlined before. Using geometry

alone, we achieve significant performance considering that

for our typical case of m = 15 and n = 600, we potentially

create a ranked list of 2mn i.e. 18000 poses and still obtain

within 20m localization in the top-100 ranks.

The inset in Fig. 3 shows the distribution of ground el-

evation at the ground-truth locations of the 50 queries in

our test set. The variation clearly indicates the importance

of being able to operate with a flexible camera height as-

sumption in our algorithm. Any algorithm that assumes a

fixed camera height (at some nominal ground-plane eleva-

tion) would not be able to deal with this variation.
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