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Abstract— This paper presents a novel method to recover 3D
structure of the optic disc in the retina from two uncalibrated
fundus images. Retinal images are commonly uncalibrated
when acquired clinically, creating rectification challenges as
well as significant radiometric and blur differences within the
stereo pair. By exploiting structural peculiarities of the retina,
we modified the Graph Cuts computational stereo method
(one of current state-of-the-art methods) to yield a high-
quality algorithm for fundus stereo reconstruction. Extensive
qualitative and quantitative experimental evaluation (where
OCT scans are used as 3D ground truth) on our and publicly
available datasets shows the superiority of the proposed method
in comparison to other alternatives.

I. INTRODUCTION

A. Motivation

Degenerative eye diseases that affect the optic nerve, like
glaucoma, are leading causes of vision loss and blindness.
For diagnosing glaucoma, a key indicator is the 3D confor-
mation of the optic disc [1]. Consequently, easy and reliable
3D structure recovery technology for the optic disc has long
been sought for prompt and accurate glaucoma diagnosis.

To avoid the subjective challenges to human observers
in assessing optic disc structure from conventional clinical
photographs [1], scanning laser techniques are being applied
to the optic disc and/or retina, including various approaches
to optical coherence tomography (OCT). These instruments
are yet to achieve convincingly superior performance for
glaucoma diagnosis over the qualitative evaluation of stereo-
scopic optic disc photographs by experienced clinicians.
These technologies are continuously evolving, but with ven-
dor specific image formats and software, instrument specific
analytical capabilities, high cost and other limitations.

With the continuing improved resolution of fundus cam-
eras that acquire conventional images of the optic disc,
several groups are pursuing the appealing alternative of
recovering 3D structure from optic disc images captured
from different viewpoints to create a stereo image pair.

The general idea is depicted in Fig. 1 where two images of
the fundus taken from slightly different viewpoints (referred
to as “left” and “right” images in the stereo pair) are used
to recover the 3D geometry via a computational method
that closely achieves the 3D structure recovery quality of
a “ground truth” method, here assumed to be OCT.
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Fig. 1. 3D reconstruction of fundus from two spatially displaced views is
comparable to the depth measurements taken by the OCT method. From left
to right: Two retinal images taken from different viewing angles referred
to as “left” and “right” images of the stereo pair; OCT scan depth data
and corresponding 3D reconstruction used as the “Ground Truth”; stereo
disparity map obtained by the proposed algorithm and the corresponding
3D reconstruction are a very good correspondence with the ground truth.

B. Previous Research

Computational stereo has been extensively researched for
several decades, and remarkable results have been achieved
in a number of applications such as 3D modeling, aid-in
driving, augmented reality, etc. [13], [3]. At the same time,
perfunctory application of existing stereo solutions may not
provide the best results for retinal and optic disc images
for a number of reasons: significant change in viewing
angle results in noticeably different intensity properties of
a region, violating the Lambertian surface assumption as
well as introducing geometric distortions; camera focus may
be significantly different from one image to another as the
capture process is not synchronized (an issue infrequently ad-
dressed by the stereo community); images taken at different
times may have local artefacts from ocular media opacities
(e.g., vitreous floaters); images taken manually require a
good automatic rectification procedure as prior calibration is
not an option when manual camera displacement is needed
to induce image disparity.

Previous stereo approaches to ocular fundus images at-
tempted to alleviate the aforementioned issues by perform-
ing stereo estimation only around blood vessels which can
provide distinctive structure (e.g., [8]), developing a special-
purpose multi-scale matching strategy (e.g., [16]), attempting
to explicitly reduce noise prior to stereo matching (e.g., [12])
or using other specific assumptions such as near-planar
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surfaces of the retina way from the optic disc (e.g., [9]).

C. Contributions

In the light of the problem motivation and previous
research, this paper suggests the following contributions
described in detail in Sec. II. First, we perform automatic
rectification of uncalibrated stereo images. Then, we pro-
pose a global stereo algorithm that derives its smoothness
connected grid structure on the optic disc location and solves
it efficiently via Graph Cuts method [2], [7]. We also apply
simple yet efficient global blur compensation to image stereo
pairs. In Sec. III, the performance of the proposed advances
is demonstrated on our fundus dataset and quantitatively
compared to a number of alternative stereo methods on a
publicly available dataset with OCT ground truth (University
of Iowa, UoI; see [16]). The paper concludes with final
remarks in Sec. IV.

II. TECHNICAL APPROACH

Binocular stereo relies heavily on the epipolar constraint
that is described by the Fundamental matrix [3], [5]. Once
the fundamental matrix is determined, stereo images are
rectified [11], i.e. warped such that the epipolar lines (which
constrain the location of the matched points) align with
horizontal image scanlines, making the subsequent stereo
computation efficient and more reliable. Robust normalized
8-point algorithm is a de facto standard for Fundamental
matrix estimation and subsequent rectification [5]. Never-
theless, the facts that the retinal surface is close to planar
away from the optic disc and the lower number of reliable
matches impose a stricter requirement on the feature point
selection for Fundamental matrix computation. In this work,
we adapted a method [8] where two sets of SIFT feature
[10] correspondences are used: one taken from the optic disc
and the other taken from the surrounding retinal area, with
2D homography being first estimated for the surrounding
feature matches. The cup center is detected by the method
described in [18] and the image is subsequently segmented
into cup/background regions.

In the following, we will denote the rectified left and
right images by IL and IR respectively. After rectification,
the corresponding pixels in the two images lie on the
corresponding scan-lines, i.e. for any pixel (x, y) in IL, the
corresponding pixel in IR will be (x + d, y) where d is
an offset (called the disparity) which depends on the 3D
depth of the structure imaged at pixel (x, y). This disparity
is what needs to be determined for each pixel in IL. The
widely-agreed taxonomy of computational stereo algorithms
[13] classifies all solutions between two extremes: local
and global methods. Local stereo algorithms independently
compare each pixel (x, y) in the reference image to all
pixels (x + d, y) in the other image using some similarity
measure δ(x, y, d) computed over locally aggregated patches
and choose the disparity value d?(x, y) corresponding to
the best match, i.e., d?(x, y) = arg maxd{δ(x, y, d)}. This
solution is fast and easy to implement, but does not always
produce good results in practice since it does not enforce

depth continuity between neighboring pixels. Smoothness of
depth between pixels is usually enforced in global stereo
algorithms that formulate the problem as minimization of an
energy term E over disparity map d:

E(d) = Edata(d) + λsEsmooth(d). (1)
The total energy is minimized simultaneously for all pixels

in the image and this tends to produce disparity maps of
significantly higher quality. In this paper, we propose a novel
global algorithm that specifically handles the challenges in
matching fundus images.

A. Correlation volume computation

We will refer to the collection of values δ(x, y, d) over
all pixels (x, y) and all potential disparities d by the name
“correlation volume”. Typically, this volume is computed
for each pixel (x, y) in IL by taking a neighborhood of
pixels ΩW around it (W ×W sized patch) and measuring its
correlation with a corresponding patch centered at location
(x + d, y) in IR. We use the zero-mean normalized-cross-
correlation (NCC) measure which is defined as follows:
δW (x, y, d) = (2)∑

(x′,y′)∈ΩW

(
IL(x′, y′)− IL

) (
IR(x′ + d, y′)− IR

)
√∑

ΩW

(
IL(x′, y′)− IL

)
)2
∑
ΩW

(
IR(x′ + d, y′)− IR

)
)2
,

IL =
1

W 2

∑
(x′,y′)∈ΩW

IL(x′, y′),

IR =
1

W 2

∑
(x′,y′)∈ΩW

IR(x′ + d, y′),

where the subscript W makes explicit the dependence of the
correlation score on the window size chosen. This measure
handles bias differences between the images well [3].

While this approach is sufficient for scenes where the
object scales are similar, it leads to erroneous results for
fundus images since the scale of the structure at each
pixel can be quite variable. Choosing a small window size
everywhere will lead to insufficient matching regions for low-
texture and thick vessels. Similarly, choosing a large window
size everywhere will lead to an overall smooth disparity
map where the high-frequency variation of depth is lost.
To resolve this, we propose a window-selection approach
that determines the best window size at each pixel and
show that the recovered size estimates agree with the scale
of the structure at that point. In addition, by choosing the
optimal window size at each pixel, we are able to use
the corresponding correlation volume for the subsequent
optimization process.

For each pixel, we compute the correlation vol-
ume δW (x, y, d) for a range of window sizes W ∈
{11, 21, 31, 41, 51} pixels. Now, for each pixel, we can com-
pare the maximum correlation magnitudes achieved by each
window size and pick the window which gives the best cor-
relation as the selected window for that pixel. However, this
approach can lead to erroneous results since the correlation
magnitudes across different window sizes are not directly
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comparable. In addition, we prefer a correlation volume that
has a more well defined peak to one with a higher but
shallow peak. We found this to be particularly true for fundus
images where, due to lack of texture in a smaller window,
the correlation magnitudes tend to be high but using a larger
window can include features like vessel boundaries which
lead to a more sharply peaked correlation volume. Therefore,
we use the correlation confidence measure from [19] that
captures the distinctiveness of the best peak in the correlation
volume for each pixel. If s1(x, y,W ) and s2(x, y,W ) are the
best and second best correlation scores, respectively, for two
distinct peaks in the correlation volume for a pixel (x, y) at
window-size W , its correlation confidence is defined as:

c(x, y,W ) =

∣∣∣∣s1(x, y,W )− s2(x, y,W )

1 + s2(x, y,W )

∣∣∣∣ . (3)

The best window for pixel (x, y) is then selected as
W ?(x, y) = arg maxW {c(x, y,W )}. The correlation volume
δW?(x, y, d) is chosen for subsequent optimization. Note that
the W ? will, in general, be different for each pixel. In the
following, we will drop the subscript and refer to the chosen
correlation volume for each pixel simply as δ(x, y, d).

Once the correlation volume is computed, the standard
approach to global stereo is to represent the input image as
a 4-connected grid of pixels and set the data and smoothness
terms as follows [13]. The term Edata is a unary data
term that captures the match energy cost between associated
pixels at each possible disparity and is thus set using the
correlation volume δ(x, y, d). The term Esmooth is a binary
term that penalizes nearby pixels if they achieve different
disparities (usually defined via the Potts model, assigning
0 when disparities are equal and 1 when they are not [3]),
thus, enforcing overall smoothness in the disparity map. For
tractability, this smoothness is only enforced between pairs
of pixels that are 4-connected in the image.

Edata(x, y, d) = 1− δ(x, y, d), (4)
Esmooth(d1, d2) = min(|d1 − d2|, 1) (5)

The total energy E(d) can then be optimized by techniques
like Belief Propagation, Dynamic Programming, etc. In this
paper, we use the Graph-Cuts α-expansion algorithm [2].

In the following, we describe our formulation where by
adding domain specific components to the data and smooth-
ness terms above, we are able to obtain a much more accurate
solution to the fundus structure recovery problem.

B. Data Term

In our formulation, this term is computed as a composition
of three sub-terms:

Edata(x, y, d) = λconf · λdisc · Ematchdata (x, y, d) (6)
where,

Ematchdata (x, y, d) = 1− δ(x, y, d), (7)
λconf (x, y) = 0.5eσcc(x,y,W

?), (8)

λdisc(x, y) = e(3− 4r
R ), (9)

where σc is an empirically determined constant (σc = 10 in
all our experiments), r is the pixel distance of pixel (x, y)

from the detected optic-disc center (kx, ky) and R is the
width of the image in pixels.

The sub-term λconf (x, y) uses the correlation confidence
measure c(x, y,W ?) obtained from the correlation volume
at the selected window-size W ? to modulate the weight of
the data-term. A sharply peaked correlation profile implies
a good confidence match and forces the correlation profile
to have higher influence in the optimization. Otherwise,
the lower magnitude of λconf (x, y) reduces the influence
of the correlation profile so that low-confidence points can
be moved around in disparity space more readily. As an
example, ignoring the factor λdisc, for σc = 10 we will
get Edata = 0.5Ematchdata for pixels with confidence 0, and
Edata = 1.35Ematchdata for pixels with confidence 0.1.

In this work, we propose a novel “disc-dependent” term
λdisc(x, y) that controls the contribution of the data term for
each pixel according to its distance from the optic disc center.
For pixels which are close to the disc center, we would like
to avoid any smoothness based regularization and instead
base their disparity computation on the data term as much
as possible (still modulated appropriately by the confidence
term λconf ). In contrast, for pixels outside the disc, we would
like to capture the context of the surrounding pixels and
use that to regularize the computed disparity. Thus, the term
λdisc(x, y) is a decreasing function of the distance of the
pixel from the disc center.

C. Smoothness Term

Since we work with a 4-connected image graph, we will
define smoothness only between pairs of pixels (x1, y1)
and (x2, y2) such that they are either horizontal or vertical
neighbors. Further, instead of the standard Potts model, we
will employ the truncated quadratic model along with pixel-
dependent weights to modulate the smoothness locally.
Esmooth(x1, y1, d1, x2, y2, d2) = λint · Ematchsmooth(d1, d2)

(10)
where,

Ematchsmooth(d1, d2) = min(|d1 − d2|2, Smax) (11)
λint(x1, y1, x2, y2) = e−|IL(x1,y1)−IL(x2,y2)| (12)

The term λint(d) is typically employed in global stereo
formulations and modulates the smoothness penalty as a
function of the distance between the neighboring pixels in the
intensity space. This modulation decreases the influence of
the smoothness term for pixel neighbors with large intensity
difference, e.g., when one pixel is on a retinal vessel and its
neighbor is on the background retina.

In our approach, we use a truncated quadratic model to
penalize neighboring disparity differences. Since, sharp depth
discontinuties accompanied by half-occlusions are not typical
for fundus images, we set Smax = 322 = 1024, which is
noticeably higher than for regular stereo. At the same time,
it is important to use the robust version of quadratic penalty
function to avoid gross matching errors that are possible in
fundus stereo as described in Sec. I-B.
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IL and PL IR and PR
|PL−PR|

PL
I?L and KL I?R and KR

Fig. 2. Reference and matching images have a difference in overall blur properties (an example from UoI Dataset [16]). From left to right: Left image
and its magnitude power spectrum; Right image and its magnitude power spectrum; Pointwise relative differences between left and right power spectra
|PL−PR|

PL
; Blur-compensated left image with corresponding convolution kernel; Blur-compensated right image with corresponding convolution kernel.

D. Blur compensation

Since fundus images are often acquired with camera with
manual or autofocus but the subject’s eyes can move, the
overall blur properties of the images may be noticeably
different due to effectively independent focal length values,
motion blur and/or aberrations in the ocular media, as de-
picted Fig. 2. This blur discrepancy will complicate the stereo
matching procedure, as the normalized correlation match
measure (2) works best under the assumption that image
patches differ only in global additive and multiplicative
intensity constants, and not in the frequency content.

Here, we propose to minimize this discrepancy by find-
ing the maximal magnitude power spectrum profile that is
common to both images. Consider stereo images IL and
IR having their magnitude power spectrums PL and PR
computed via Fourier analysis, e.g., FFT as

PL = ‖F (IL) ‖ and PR = ‖F (IR) ‖. (13)
Then, the maximal power spectrum profile common to both
images is just the pointwise minimum of corresponding
images’ power spectra computed as

Pbest(x) = min (PL(x), PR(x)) . (14)
Figure 2 shows corresponding magnitude power spectra and
exemplifies their common differences by showing the poin-
tise relative difference map |PL−PR|

PL
. Finally, since both left

and right images must have the same Pbest, and convolution
in spatial domain is equivalent to pointwise multiplication in
Fourier domain, the spatial convolution kernels KL and KR
are computed as

KL = F−1

(
Pbest
PL

)
and KR = F−1

(
Pbest
PR

)
. (15)

These kernels are then used to transform the original IL
and IR to images I?L and I?R with optimal common blur
properties. Specifically,

I?L = KL ⊗ IL and I?R = KR ⊗ IR, (16)
where ⊗ denotes the convolution operator. Furthermore, for
convenience, spatial kernels are bound to the 21×21 window
size (majority of values farther from the center are very close
to zero anyway) and normalized to have a unit energy.

E. Overall Algorithm

Once our data and smoothness terms are defined as in
equations (6) and (10), we can optimize the overall energy
E in equation (1) to compute the disparity map by running

Left frame Right frame Stereo disparity

Fig. 3. Rectified stereo pairs and stereo reconstruction results for our
dataset examples (see test for details). Red circle in the left image indicates
the automatically detected optic disc center. In disparity maps, brighter value
pixel denotes closer distance.

the graph-cuts expansion algorithm developed by [2]. In our
implementation, the overall weight of the smoothness term
Esmooth in equation (1) is empirically set to λs = 10.

The overall algorithm is the following:
1) Compute disc center and rectify left and right images.
2) Compensate for the global blur discrepancy between

the rectified left and right images using the algorithm
in section II-D.

3) Compute the optimal correlation volume δ(x, y, d)
using the algorithm in section II-A.

4) Compute the initial disparity assignment for each pixel
using the best correlation value for the pixel, i.e.
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Left frame Right frame OCT depth OCT reconstruction Stereo depth Stereo reconstruction

Fig. 4. More examples of stereo pairs and stereo reconstruction results for UoI Dataset.

d?(x, y) = arg maxd{δ(x, y, d)}.
5) Optimize E using graph-cuts.
6) Estimated pixel disparities are the final solution.

III. EXPERIMENTAL EVALUATION

The algorithm described in Sec. II has been implemented
in software and was tested on two different datasets.

The first dataset was obtained by the authors, and 4 pairs1

with recovered disparity maps are shown in Fig. 3. The gen-
eral shape of the retina is recovered correctly, and structure
of the cup is clearly assessable for subsequent diagnostics.
The variable appearance between each stereo pair of images
reflects the underlying differences in individual anatomy. The
proposed algorithm introduces artifacts only in the periphery
of the image away from the optic disc – regions that are
usually characterized by severe lack of structure.

1All these images were acquired on a Zeiss FF4 fundus camera (Carl
Zeiss Meditec, Inc., Dublin CA). The first, second and fourth stereo pairs
were acquired digitally using the OIS system (Ophthalmic Imaging Systems,
Sacramento CA) and extracted as .tif files. The third image pair was obtained
on Fujichrome Velvia 100 slide film and scanned as described in [15].

To perform quantitative evaluation as well as direct com-
parison of the proposed stereo algorithm to alternative solu-
tions, we use the UoI dataset [16]. The dataset contains 30
fundus stereo pairs of variable quality that have proved to be
particularly challenging due to the lack of precise rectifica-
tion as well as significant radiometric and blur differences.

Importantly, each stereo pair has an associated registered
3D depth map obtained via OCT that is assumed to be
a ground truth for stereo disparity maps. The accuracy of
the estimated depth map is evaluated as a root of mean
squared (RMS) difference between the OCT depth map and
the stereo depth map. Since stereo is metrically uncalibrated,
the disparity map is converted to the depth map via finding
a global linear transformation function, as described in [17].

Example frames, their associated depth ground truth, dis-
parity maps recovered by the proposed algorithm and their
corresponding 3D reconstruction visualizations are depicted
in Figs. 1 and 4. Depth maps recovered by stereo are in
very good correspondence with the OCT-based ground truth
depth maps albeit minor high-frequency artifacts arise as a
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GT Proposed mulScale [16]

ACTF [14] SGM [6] GC-orig [2]

Fig. 5. Stereo pair and estimated disparity maps for UoI Dataset example
using a set of algorithms outlined in Tab. I. Visualization of result for
mulScale has been directly adapted from [16].

Alg. Proposed mulScale ACTF SGM GC-orig
RMS 0.1469 0.1592 0.222 0.8195 3.0353
SD 0.047 0.0879 0.14 0.412 2.6591

95CI 0.12-0.16 0.13-0.19 0.17-0.27 0.66-0.97 1.93-4.13

TABLE I
ERROR RATES FOR SEVERAL ALGORITHMS. SEE TEXT FOR DETAILS.

result of violation of assumptions of computational stereo:
specularities, significant local differences in blur and errors
in automatic fundamental matrix estimation.

Importantly, Tab. I shows the error rate of the proposed
algorithm, as well as other well-known methods used in
stereo computation. To be directly comparable to [16], we
compute RMS, its standard deviation (SD) and 95% con-
fidence interval (95CI). In addition to our algorithm and
methods considered in [16] (the method proposed by authors
of [16] is denoted mulScale), we assess other effective stereo
techniques: (i) adaptive coarse-to-fine stereo, being a robusti-
fied improved version of standard correlation block matching
method [13] iteratively applied over image pyramid [4] and
being one of the fastest and the most versatile stereo methods
(ACTF as in [14]); (ii) semiglobal matcher, that aggregates
match cost globally but makes disparity decisions locally,
being also a quite fast algorithm able to display state-of-the-
art results (SGM as in [6]); (iii) original Graph Cuts stereo,
being a good example of classic global stereo method (GC-
orig [2]) and the algorithm from which our proposed solution
derives. Based on the quantitative evaluation, the proposed
algorithm outperforms all other alternatives; furthermore,
straightforward application of existing stereo solutions as-is
proved to be insufficient in the fundus reconstruction domain.
To exemplify the point, Fig. 5 shows disparity maps for all
aforementioned algorithms applied to the third example of
Fig. 4. Here, results shown in the bottom row represent the
structure of the fundus poorly – the structure of the cup is
either oversmoothed (and the surrounding retina mapped to a
plane) or numerous false depth discontinuities are introduced
throughout the retina.

IV. DISCUSSION AND CONCLUSIONS

We present an algorithm to compute dense disparity maps
from two images of the retina for subsequent 3D recon-
struction of the optic disc. The method is based on the
Graph Cuts global optimization, takes into account specific
structure of the fundus imagery, and accounts for global
blur differences. Based on qualitative and quantitative exper-
imental evaluation, our algorithm exhibits better performance
than all other tested computational stereo alternatives. In
comparison to modern laser scanning instruments, an image-
based computational approach is more clinically intuitive,
can accommodate improvements in software and camera
technology, is compatible with many image formats, permits
use of archived images and is cost-effective. By accurately
reconstructing the optic disc, this refined approach to stereo
recovery can permit robust detection of optic disc stability or
change over time, and it offers great promise for advancing
optic nerve diagnosis in glaucoma.
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