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Abstract- This paper addresses the frame-to-frame data
association and state estimation problems in localization of a
pedestrian relative to a moving vehicle from a far infra-red
video sequence. In a novel application of the hierarchical model­
based motion estimation framework, we are able to solve the
frame-to-frame data association problem as well as estimate a
sub-pixel accurate height ratio for a pedestrian in two frames.
To estimate the position and velocity of a pedestrian, instead
of using a constant pedestrian height model, we propose a
novel approach of using the interacting multiple-hypothesis­
mode/height filtering algorithm. We present a method to
calculate the probability of each mode from the estimated
and measured pedestrian height ratios in images. These mode
probabilities are then used to accurately estimate the pedes­
trian location by combining the mode based estimations. We
demonstrate the effectiveness of our approach comparing it to a
constant height model based approach on several IR sequences.

Keywords-Data association, pedestrian tracking, object
scale measurement, multiple-hypothesis-mode filtering.

I. INTRODUCTION

In recent years, there has been an increased use of visual
sensors in automotive safety and convenience applications.
One important safety application is to detect pedestrians[1]
at night time. Visible-range cameras do not provide sufficient
contrast to detect pedestrians well - a problem which is well
handled by near and far infra-red (NIR,FIR) cameras. FIR
cameras carry the advantage of target heat sensitivity without
the need for active ambient illumination. The images of vehi­
cles, pedestrians and animals are significantly enhanced and
are clearly visible under otherwise poor visibility conditions.
To keep the system cost low, current systems typically rely
on a single FIR camera for pedestrian detection as well as
range estimation. Accurately estimating the 3D location of
the pedestrian relative to the moving vehicle is important
for accurate warnings. This is a challenging problem as the
system has to rely on the temporal tracking to estimate the
location - both frame-to-frame data association as well as
state-estimation filtering become important. In this paper,
we will focus on the data-association and state-estimation
aspects.

Gandhi et al.[2] have given a comprehensive survey of
recent research on pedestrian collision avoidance systems.
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The paper reviews various approaches based on cues such
as shape, motion, and stereo used for detecting pedestrians
from visible as well as non-visible light sensors. Most of the
approaches use image information for single-frame detection
but not for associating these detections across frames. In [3],
a Chamfer based coarse-to-fine strategy is applied to detect
pedestrian candidates matching a predefined set of tem­
plates. However, the contour matching is not used for data­
association between frames. Some amount of work has been
done on tracking deformable objects in high-dimensional
spaces using complex parameterized models of appearance
and motion (e.g. [4]). These methods try to use filtering both
for computing the object state as well as for refining the
appearance model. This puts too much computational burden
on the filter and does not use the appearance information
directly across time.

In FIR imagery, the appearance of a pedestrian does not
change much from frame-to-frame and it becomes possible to
match the pedestrian not just with a pre-defined template set
but also with the detection seen in the previous frame. This
temporal image-based matching approach helps the tracker
by a) reducing the state-space and hence the complexity of
the filter required by not requiring an appearance model to be
maintained by the filter, b) providing an alternate more robust
means for data-association in case of missed-detections and
c) explicitly estimating a sub-pixel object size ratio (which
we call scale) in the image between two frames. In this
paper, we describe a novel application of the hierarchical
model-based motion estimation paradigm of [5] to match
pedestrian appearance over time without explicitly modeling
the pedestrian shape. The appearance matching is used both
to resolve the frame-to-frame association of the detections
as well as to estimate the scale across time which is an
important component of the filter described in this paper.

Once the pedestrian bounding boxes are detected and tem­
poral associations established, depending on the availability
of the intrinsic and extrinsic camera parameters, a tracking
process estimates the locations and velocities of pedestrians
in either in image space or in host vehicle referenced 3D
world coordinate system with particular data association
techniques. Depending on the system and observation mod-
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eling approaches, the tracking algorithms could be Kalman
filtering for linear systems [6], [7]; particle filtering [8], [9],
[10], [11], and unscented Kalman filtering [12] for nonlinear
systems; or adaptive interacting multiple models [13]. The
localization process can project a ROI measurement to a
3D world frame by using the pin hole camera model. In
this process, most researchers assume the height of the
pedestrian (H) is constant for all kind of people, for example,
H = 1.65 ± O.lm in [6] and H = 1.8m in [9]. However,
the projected 3D distance error could be a significant factor
because the difference between an assumed height and the
real height can be as large as ±0.5 m.

To obtain a more accurate 3D localization, instead of
using a constant H (one mode) for all pedestrians, this pa­
per presents a multiple-hypothesis-mode filtering algorithm
where each mode assumes a potential discrete height value
for the pedestrian. Assuming that the pedestrian heights can
be discretized into N bins or modes, N filters run in parallel
as part of the filtering algorithm, and the probability of each
filter is obtained by evaluating the likelihood value of an
estimated pedestrian scale relative to the measured scale from
the appearance matcher. The final pedestrian location can
be obtained either by combining the N-mode estimations
together or just choosing the one with the highest likelihood
value. Experiments from several recorded IR sequences show
the promised results of the proposed method.

In brief, the main contributions of this paper can be
summarized as follows: (i) a novel application of hierar­
chical model-based motion estimation for temporal data­
association, matching and scale estimation of detected pedes­
trians in FIR imagery, (ii) a novel approach of using multiple­
hypothesis modes to solve the pedestrian localization prob­
lem and (iii) the concept of using the object size ratio (scale)
between two frames to evaluate the likelihood value of each
hypothesis mode.

The rest of the paper is organized as follows. Section
II presents an overview of our system, and section III
describes the pedestrian detection and appearance matching
approaches. The single mode and multiple-hypothesis-mode
filters are described in sections IV and V respectively.
Experiment results are briefed in section VI, and conclusions
are drawn in section VII.

II. OVERVIEW

Figure 1 presents an overview of our system. The inputs
to the system are an FIR video stream and the vehicle speed
and yaw rate measurements from the vehicle CAN bus.
The pedestrian detection module detects candidate pedestrian
ROIs in each frame and feeds them to the appearance
matching module. This module takes in the current frame
detections and the track predictions from the state-estimation
filter and establishes appearance match based frame-to-frame

Fig. 1. An overview of the system.

associations. For each pedestrian ROI, it outputs the feet and
head locations (from the ROI), and a scale estimate between
the current and reference frames. The ego-motion module
computes a pitch rate estimate using the image data. The
camera passed distance filter uses the vehicle speed and
yaw-rate measurements to estimate the distance the vehicle
has traveled since the last frame. Finally, a multi-mode­
hypothesis filter combines the pitch estimate, the vehicle
passed distance estimate, the ROI feet and head locations
and the scale estimates to compute the 3D location of the
pedestrian relative to the camera and its velocity in the
inertial frame.

III. PEDESTRIAN DETECTION AND
APPEARANCE MATCHING

A FIR sensor images by passively sensing the heat­
signature of the environment. Consequently, pedestrians and
other warmer objects like vehicle undersides are imaged at
brighter intensities. We follow the initial pedestrian detection
approach in [14] by first selecting interesting regions by
scanning for hot-spots in the image. The interesting regions
found by the hot-spot detector provide seeds to an energy
minimization based pedestrian model fitting algorithm which
detects pedestrian aspect ROIs as initial detections. There­
after, a multi-stage classifier is used to prune the initial
detection set to give a set of candidates for tracking in
successive frames.

Once a set of detections is available, a data-association
step tries to associate new detections with any existing
tracks. New tracks are started for detections never seen
before and older tracks are terminated if no detections are
seen for them contiguously for a few frames. For each
existing track, an expected detection location is computed
for this frame by projecting the world location predicted
by the state-estimation filter (described in sections IV and
V). An ROI overlap criterion is used to decide whether
a new detection might possibly belong to this track. For
all the detections that pass the overlap criterion, an image
based appearance matching test is conducted between the
ROI in the last frame and the candidates in this frame
to decide the best matching candidate. The appearance
matching test outputs a confidence measure which is used
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IV. SINGLE MODE FILTER

Fig. 2. Illustration of the appearance matching process to recover ROI at
time t and the scale change between frames t - 1 and t.

where 8 is the pitch angle of the vehicle. Modeling the pitch
angle as part of the state is important to be able to localize
a pedestrian which is far away from the camera.

(1)

In the single mode filter, we assume the height of the
pedestrian is known. As shown in Fig. 3, under the ground
plane assumption, suppose a pedestrian is located at (X, Y)
in a vehicle fixed coordinate system with a walking velocity
of (vx ,vy ) in the inertial coordinate system at time tk. The
system state is defined as

accumulating, in practice, we perform appearance matching
between a reference frame t - k (k 2: 1) in the past and the
current frame t. The reference frame is kept fixed until the
estimated scale becomes too large at which point it is reset
to t - 1.

The appearance matching algorithm outlined above may
fail in the special case where the pedestrian is moving lat­
erally across the field-of-view due to significant leg motion.
Thus, in our system, in general we estimate the transforma­
tion for the top and bottom halves of the ROI separately and
then either output just the parameters from the top-half or re­
estimate them for the whole ROI depending on whether the
two sets of parameters are close (thus implying that the legs
are in fact following the same motion parameters). We have
seen a significant improvement in the lateral velocity esti­
mation of pedestrians with the use of appearance matching.
This is because it is difficult for a single-frame detector to
output reliable bounding boxes around a pedestrian moving
laterally while the appearance matcher estimates a much
more accurate sub-pixel bounding box estimate by using
information from the upper body.

Fig.6 shows an example of how the scale estimated from
the appearance matching method is smoother compared
to that estimated by just taking ratios of ROI heights in
successive frames (height-ratio method). The zig-zag nature
of the plot can be attributed to the varying separation between
the current and the reference frames.

to decide the best matching candidate as well as to infer if
there is a mis-detection. This helps with data-association in
cluttered environments where pedestrians occlude each other
(thus leading to a mis-detection) by avoiding association of
pedestrians which are dissimilar in appearance but close in
world locations. In addition, the matching step estimates a
parametric transformation between the two detections which
provides a scale estimate to the state-estimation filter. In case
the matching step outputs a high confidence, the parametric
transformation is also used to warp the tracked ROI to the
current frame. This warped ROJ is then used as the new
measurement for this frame instead of the output from the
single-frame detector. This reduces the dependence on the
ROI detected by the single-frame detector which is typically
very noisy.

Our appearance matching and scale-estimation algorithm
is based on the hierarchical model-based motion estimation
framework of [5]. Since detection of stable features over time
is difficult in FIR imagery, it is ideal to use a dense direct­
estimation framework like [5] to compute an appropriate
motion model between frames. For this problem, we estimate
a reduced affine motion model. This is because the local
depth variation of the pedestrian is very small relative to its
distance from the camera and thus, an affine motion-model is
sufficient. Also, in the cases where the host-vehicle is directly
approaching a pedestrian, there is sufficient change in the
pedestrian size that a simple correlation based matching
scheme (i.e. translation only model) would not work.

The appearance matching and scale estimation scheme is
presented in Fig.2. The detected ROI in the last frame (time
t - 1) is expanded by 10% of the initial size and image
pixels within this ROI serve as the reference image. Each
ROI candidate close to the filter prediction in the image
at time t is termed as the inspection image. The goal of
the matching algorithm is to search for a transformation
that relates the inspection image to the reference image.
The direct-estimation method is applied in a coarse-to-fine
manner on the laplacian image pyramids computed from
the reference and inspection images. In this coarse-to-fine
estimation framework, motion models with a lower number
of parameters are estimated using images at coarser level and
then used to seed estimation of more complex models using
images at finer levels. This speeds up the estimation while
also avoiding getting stuck in local minima. We estimate only
a 2-parameter (tx,ty ) translation motion model at the coarsest
level and a 3-parameter (s,tx,ty ) reduced affine motion model
at finer levels. The parameter values are estimated with an
accuracy of 0.1 of a pixel. The ROI detected at time t - 1
is warped using the estimated transformation to compute
a ROI at time t which is used as the measurement to the
state-estimation filter. To keep the estimation errors from
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V. MULTI-MODE FILTER

Fig. 4. This schematic illustrates the variation of an object's image height
h as the camera (with focal-length f) moves a distance of lik~l between
frames k and I.

HH

term which is also modeled as a zero mean Gaussian with
covariance Rk •

Once we have the system and observation equations (2)
and (4), the non-linear filtering algorithms can be applied to
estimate the state of the system from its observation history.
Particularly, in this work the extended Kalman filtering
(EKF) is employed.

1(v"vJ )

(X,Y).

(v% • VY ) x : tpedestrian}

'i] i Y

~ ~y)H {oJ~y:~:-Yvemcle)

Fig. 3. Left: a 3D view of the camera coordinate system used in system
modeling; Right: a bird-eye view of the system modeling coordinates.

Assuming that the pedestrian moves with a nearly constant
velocity, its location in the camera reference frame can be
modeled by a rotation (governed by the vehicle yaw angle
change) and a translation (governed by the vehicle movement
which shifts the pedestrian relative to the rotated frame).
Similar to [12], from the geometric relationship shown in
Fig.3, the kinematics equation between two consecutive
frames k and k+ 1 can be written as

where Wk is the kinematics modeling uncertainty which is
assumed to be Wk rv N(O, Qk) and the control input term,
Uk = (Vk, ak, fJk )T, represents the speed, yaw and pitch rates
of the camera. The speed and yaw rate are obtained directly
from the vehicle CAN bus while the pitch rate is estimated by
an image based ego-motion estimation module [15]. Let T =
tk+ I - tk, a = aT, then the matrices A and B are expressed

The estimation results of the single mode filter (for results,
refer to section VI) strongly rely on the a priori information
of the pedestrian's height. Since the height variance of
pedestrians can be as large as ±O.5m, our simulations show
that a fixed height assumption can introduce unacceptable
errors. For example, if we assume that H = 1.6m for a
pedestrian whose actual height is 1.3(1.9)m and is standing
at a longitudinal distance of around 32 m, the estimated
distance will be about 5 m more(less) than the ground truth.

To deal with this problem, the filter can be designed in
the interacting multiple model (IMM) [16] framework. To
do so, we first discretize the height range of pedestrians
as {HI,H2,··· ,HN}, then for each height hypothesis, a
corresponding single mode filter is applied and its likelihood
value evaluated. The final estimated state can be obtained
either by choosing the result from the largest likelihood value
filter or by doing a weighted combination of individual filter
results. The details of the multi-mode filter is presented in
the following subsections.(3)

(2)
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where Sa = sin(a), and Ca = cos(a).
The observation vector is defined as,

as,

hI = !PXXCOS(8)~Zcsin(8) + i +nl,
h - + Xsin(8)+Zc cos(8) Ih

2 - J py Xcos(8)-Zcsin(8) + "2 +n2,

h3 = !pxxcos(8)-(ic-H)sin(8) + i +n3,
h - + X sin(8)+(Zc-H )cos(8) Ih

4 - J py Xcos(8)-(Zc-H)sin(8) + "2 +n4,

where (Xjeet,Yjeet) and (Xhead,Yhead) are the feet and head
locations of the pedestrian in the image. In addition, assum­
ing the camera projection parameters to be known, we have
the following non-linear measurement equations,

(4)
where H is the world-height of the pedestrian, Iw and Ih are
the width and height of the image respectively, !px and !py

are the horizontal and vertical focal lengths of the camera
respectively, Zc is the height of the camera from the ground
plane, and 8 is the pitch angle of the camera relative to the
ground plane. Ok = [nl,n2,n3,n4][ is the observation noise

A. Mode Likelihood Value Evaluation

To evaluate the likelihood value of a single mode filter
corresponding to a particular pedestrian height, we derive
the formula to estimate the scale of a pedestrian for a given
camera passed distance first. As shown in Fig. 4, let H be
the height of a pedestrian in the 3D world, Xk be his distance
from the camera (as defined in (1)), and hk be his height in
the image (in pixels) at frame k. Let Iik~I denote the camera
passed distance from frames k to 1(l > k). From hkXk = hiXI

one has,
~ hI Xk Xk

sk~I = - = - = (5)
h k Xl Xk -lik~I '

where Sk~I represents the scale of the pedestrian in the image
between frames k and l.

Equation (5) shows that the scale is determined by the
distance between the camera and the pedestrian at frame
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(11)

(14)(j = 1,··· ,N),

N

iii1k = L J.lll~[p~'k +x~(k(x~(kf], (13)
j=1

H !py / (Yfeet - Yhead) ,

X(Xfeet -0.5Iw )/!px,

vYO = 0,

atan2[- X(Yjeet-O.5Ih)-Zcfpy + ]
"'7'""(y.....;.je...::..et---:::-O.-=-51=--'h):-::Z~c/7"""':fp~y....:..--===X ,J py ,

Xo
Yo

Fig. 5. The data flow of the IMM algorithm.

"1
Xk+llk+l

P~+1Ik+11-__"-----I__--+-_--+-"

(i) Initialization. Given the camera intrinsic and extrinsic

parameters, the height of the pedestrian H, and its head

(Xhead,Yhead) and feet (Xfeet,Yfeet) locations in the image,
its initial state vector, xOlo = [Xo, Yo, vxo ' vYO ' 80]T, is given by

where pji is an element of the mode transition probability

matrix, and Jll is the probability of model j at time tk. Then
the mixed states and their covariances are calculated by

respectively, where x{(k = x{lk - x~lk' and i = 1, ... ,N.
(iii) Mode updation and likelihood value evaluation. By

using the corresponding mixed results (13) as inputs, the jth

mode EKF is updated by the observation zk+ I to yield its

estimate at tk+l, e.g., (X{+llk+I' pl+l lk+I). The corresponding
likelihood value can be calculated by (7) and is denoted by

A{+I·
(iv) Model probability calculation. The weight of model

j can be updated by

Jl j - 1Aj c'
k+1 - ~ k+1 J

where Iw , Ih' !px, !py, and Zc are as in (4). The corresponding
covariance matrix can be set from the information of the
observation covariance, the Jacobian of (11) and independent

initial parameters for velocity elements.

(ii) Mode mixing. In the mode mixing block, first we need

to mix the mode probabilities i.e.,

jli 1 . N .
J.lklk="i/jiJ.J/" ci=LPjiJ.ll, (i,j=l, ... ,N), (12)

j=1

(8)

(9)
dk+T cos(akT) +WI (k),
vk +w2(k),
ak +w3(k),

Xk = [d,v,a]k,

where d, v, and a are the camera passed distance, the vehicle

speed and the vehicle yaw rate, respectively. The kinematics
equation of this filter can be modeled as:

k and the camera passed distance between frames k and
l. In addition, given the estimated camera to pedestrian

distance and its variance pair (Xk, al ), and the camera
" k

passed distance and is variance pair(dk, ( 4), we can compute

the estimated scale and its variance as follows:

" Xk 2 2 2 2 2
sk~l = -,,--, as = ci a~ +c2ax ' (6)

Xk -Ll k

where 0'1 = O'Jk + O'~, c\ = (X/!Li)2 , C2 = - (Xk~Li)2' and A =
~-Jk.

Note that the scale estimated from (6) is implicitly de­

pendent on the height of the pedestrian hypothesized by the

single-mode filter. Let (Sk~l,a;) be the actual scale and its
variance estimated by the appearance matching algorithm
(described in section III). Then, the likelihood of this mode

can be represented as

A - _1_ (_ (Sk~l - Sk~I)2) (7)
k~l - y'2ia exp 2a2 '

where a 2 = a; + aj.

B. Camera Passed Distance Estimation

The camera passed distance Llk~l can be estimated by
filtering the speed and yaw rate data obtained from the

vehicle CAN bus. The state vector of the camera passed
distance filter is defined as:

where Uk = (0 1 0; °°1) and Ok rv N(O,Rk) with Rk =
diag( av(k), aa(k)).

Due to the non-linearity of the kinematics equation, the

camera-passed distance filter is implemented as an EKF.

C. Interacting Multi-Mode Implementation

The multiple EKFs which correspond to multiple pedes­

trian height hypothesis are integrated under the interacting
multiple mode (IMM) framework [16]. As shown in Fig.

5, assuming that we have N discrete height hypotheses, the

implementation of IMM filter includes the following steps:

where Wk = (WI, W2, W3)T is the uncertainty term which is
assumed to be zero mean Gaussian with constant covariance.

The measurement vector and its equation are respectively
defined as:
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Fig. 6. The original observation data from sequence number 25. Top:
measured head and feet locations in the image; Bottom: measured scales by
appearance matching and height ratio methods.

(v) State combination. The final estimated state and its
covariance are respectively computed as

N
A ~ Aj j
Xk+llk+l = i..J Xk+llk+l,uk+l'

j=l

N

Pk+llk+l = E ,ul+1 (P{+llk+l +XjX]),
j=l

where Xj = x{+llk+l - Xk+llk+l·

VI. RESULTS

The proposed algorithm was tested on seven FIR se­
quences with known pedestrian heights (1.66m, 1.70m,
1.86m and 1.92m). These sequences cover a wide variety
of driving and pedestrian scenarios. These include driving
along straight roads as well as turns with multiple pedestrians
standing still (in front, to the left and to the right of the
vehicle), walking towards the vehicle, or walking laterally
across the vehicle path etc.

The images are captured at 30 Hz at a resolution of
324 x 256 by a camera with horizontal and vertical focal­
lengths !px = 498.5847 and !py = 505.0273 respectively,
mounted on the front bumper of the car at a height of 0.65
m above the ground. For the single mode EKF, the system
covariance matrix is set as Q= diag(3.0864 x 10-7,3.0864 x
10-7 ,0.00083333,0.00083333,0.01), its cross terms for ve­
locity are Q(3,1)=Q(I,3) = Q(4,2) = Q(2,4) = 1.3889 x
10-5, and all the other elements are zero; the observation
covariance matrix is set as R = diag(5,5,5,5). For the
vehicle passed distance filter, its system uncertainty vari­
ances of speed and yaw rate are a; = 1(m2/ s2), a8 =
0.01 (rad2/s2). The measurement covariance matrix is set to
R = diag(I,O.OI).

Fig.6 displays the original measurements of the feet/head
locations of a pedestrian in the image and its scale between
the current frame and a reference frame for one sequence.
The foot/head locations are obtained from the detection and

Fig. 7. The observation and estimated results of the passed distance filter.

appearance matching algorithms described in section III.
The scales are computed by both appearance matching and
the height ratio features. Comparing with the height ratio
feature, the appearance matching gives a more smooth result,
however it may fail whenever the appearance matching is not
reliable (e.g., in the frame range of [155, 160] at the bottom
plot of Fig. 6). Hence, the scales from height ratio are used by
the filter whenever the confidence value from the appearance
matcher is low.

The measured speed and yaw-rate results for the sequence
are shown in red pluses in Fig. 7. The estimated results of
the vehicle passed distance, its speed and yaw rate are shown
in the same figure by blue solid lines.

Fig.8 shows the intermediate data from both IMM and
single mode EKF filters. The left sub-plot is a compari­
son of the measured and estimated scales from different
modes. Since the ground truth of the pedestrian height is
1.92 m, the estimated scales from the mode H = 1.9 mare
almost overlapped on the observed ones. This verifies the
correctness of our scale estimation approach. The middle
and right sub-plots display the likelihood values used and
mode probabilities estimated from the IMM algorithm. They
indicate that the mode H = 1.90m has the largest likelihood
values as well as the highest mode probabilities, since it is
the closest one to the ground truth height.

Finally, in Fig. 9, we plot the estimated state vector from
the IMM filter and four single mode filters. The single mode
filters include three from the modes used in the IMM, and
one from the mode with ground truth height (H = 1.92m).
It is clear from these plots that the state estimated by the
IMM filter is very close to the estimate from a single mode
filter with known ground truth height.

VII. CONCLUSIONS

In summary, we propose a novel algorithm to do temporal
data-association, matching and scale estimation from de­
tected pedestrian ROIs in FIR image sequences by applying
the hierarchical model-based motion estimation. In order to
accurately localize a pedestrian in the vehicle fixed reference
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Fig. 8. Left: A comparison of the used observation scale and the estimated
scales from different pedestrian height hypotheses; Middle: the normalized
likelihood values from different modes; Right: the evolution of mode
probabilities in IMM algorithm. This figure is best viewed in color.

Fig. 9. A comparison of the elements of the state vector from single mode
EKFs and the IMM filter, where three of the single mode filters use the
heights used in the IMM and one uses the ground truth height. This figure
is best viewed in color.

coordinate system, instead of using a constant pedestrian
height assumption, we propose to use the multi-hypothesis­
mode filtering. The likelihood value of each hypothesis mode
can be evaluated using the scale computed from the appear­
ance matching process and estimates of the vehicle passed
distance and the longitudinal distance of the pedestrian.
Additionally, the idea of multi-hypothesis-mode filtering is
implemented under the framework of an IMM algorithm.
The results from seven FIR video sequences demonstrate the
success of the proposed algorithm.

Using an IMM kind of framework to implement the
multiple-hypothesis-pedestrian-height filtering is one ap­
proach. Another approach is to use a particle filter. To do
so, one can put the pedestrian height in the state vector
defined by (1), and use discretized heights to generate
different hypotheses. The likelihood of each hypothesis can
still be evaluated using the method described in section V.C.
The only concern would be the heavier computational load
relative to the proposed method.

Finally, we should point out that besides the noise charac­
teristics of the other observation data, the estimation errors of
the proposed method are highly dependent on the accuracy
of scale values measured from the appearance matching
algorithm and the CAN bus data quality. Quantitatively
evaluating the effects of these two factors will be one of
our future tasks.
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