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Abstract— We describe a low-cost vision-based sensing and
positioning system that enables intelligent vehicles of the future
to autonomously drive in an urban environment with traffic.
The system was built by integrating Sarnoff’s algorithms for
driver awareness and vehicle safety with commercial off-the-
shelf hardware on a robot vehicle. We implemented a modular
and parallelized software architecture that allowed us to achieve
an overall sensor update rate of 12 Hz with multiple high
resolution HD cameras without sacrificing robustness and in-
field performance. The system was field tested on the Team
Autonomous Solutions vehicle, one of the top twenty teams in
the 2007 DARPA Urban Challenge competition. In addition
to enabling autonomy, our low-cost perception system has
an intermediate advantage of providing driver awareness for
convenience functions such as adaptive cruise control, lane
departure sensing and forward and side-collision warning.

I. INTRODUCTION

The DARPA Urban Challenge 2007 [1] was a milestone

event in the area of intelligent transportation systems. It

provided us with a glimpse of the not so distant future where

autonomous unmanned vehicles can safely and reliably drive

from one designated location to another in an urban environ-

ment with other manned and unmanned vehicle traffic. In

order to accomplish its missions, these autonomous vehicles

had to perform complex maneuvers such as merging, passing,

parking and obeying intersection precedence, with no human

intervention. Sarnoff Corporation participated in this event as

part of Team Autonomous Solutions, which placed among

the top twenty teams in the competition. We developed

an integrated vision based sensing and positioning system

for autonomous navigation composed of existing Sarnoff

technologies and commercial off-the shelf (COTS) hardware.

While the field of autonomous mobile robotics has made

a lot of progress in the recent past [2], truly deployable in-

telligent systems that work reliably using COTS components

in dynamic everyday scenarios are seldom seen outside of

laboratories. The 2005 DARPA Grand Challenge [3] saw

some of the best robotics researchers successfully complete

an off-road navigation competition with no traffic or dynamic

obstacles. Extending this competition to the dynamic urban
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Fig. 1. “Ted” with sensors highlighted. Blue ovals show the stereo camera
pairs, red show the LIDARs in the front and back. The PCs are mounted
on a rack behind the passenger seat. The picture also shows the ventilation
system used to keep the setup cool.

environment required significant technological advances in

sensing systems and algorithms.

Similarly in the field of intelligent automotive systems,

there has been a lot of work done in developing convenience

and safety features based on both passive (vision) and

active (radar, laser) sensing [4]. However at the time of the

DARPA Urban Challenge there was no available integrated

solution that could perform all the necessary sensing to

enable autonomous driving in a complex urban environment.

This motivated us to develop our integrated vision based

sensing system for autonomous navigation which could es-

timate ego-motion, and detect and track road boundaries,

in-path obstacles and stationary and moving vehicles. The

key contribution of our work is a real-time primarily vision-

based system that provides full spatial and temporal aware-

ness of the environment.. Other systems [5], [6] have used

single frame stereo vision and color based segmentation for

obstacle detection and identifying easily traversable roads

respectively. Those had no object identification (vehicle/non-

vehicle) or temporal tracking and association strategies im-

plemented which would enable the system to successfully

navigate autonomously based primarily on the vision system.

Several systems at the DARPA Urban Challenge used a high-

definition Velodyne LIDAR [7], [8] that provided 1.8 million

3D points per second around the vehicle. While the Velodyne

provides rich data, it is fairly expensive, conspicuous, and

substantially changes a vehicle’s profile. Our sensor suite

is cheaper, more compact and can be mounted inside the

vehicle, making it more attractive for both military and
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Fig. 2. Sensor Placement. This scale drawing illustrates the sensor horizons
of the three stereo vision sensors (cyan sectors) and the front and back lasers
(blue sectors) for the host vehicle (between the laser sectors in the image)
standing on an intersection. Both perpendicular and 45 degree intersections
are illustrated. The right stereo sensors had to be angled to satisfy short-
range visibility requirement on intersections (refer to Fig.5). Approaching
vehicles beyond 80m were specifically detected by the Motion Detection
module.

commercial autonomous robot users.

Section II describes the various system components and

section III their integration. Lessons learned and future work

are in Section V.

II. SYSTEM COMPONENTS

The smallest building block in our vision based system

is a single high resolution digital monochrome camera used

for optical flow based motion detection. We composed these

cameras in pairs to perform real time dense stereo using a

high-end image processor board. Next we synchronized and

integrated each pair of cameras with an inexpensive inertial

measurement unit (IMU), GPS and vehicle odometry (via

the vehicle CAN bus) to implement a positioning system.

Each of these integrated stereo modules was connected

to a single computer and the communication between the

computers was through ethernet. While a pair of static

LADAR scanners were also mounted on the vehicle, these

were used as independent sensors for redundant detection of

static obstacles and not integrated with the vision system.

We now present a discussion of the perception requirements

for the Urban Challenge and the perception modules we

developed to address them.

A. Perception Requirements

The choice of the imaging system was largely governed

by the perception needs of an autonomous vehicle navigating

through traffic and following traffic regulations. We per-

formed experiments to identify the sensor horizon required

in different directions on the basis of traffic maneuvers that

needed to be performed. Assuming a maximum approach

speed of 30 mph and a safety cushion of 10 seconds (follow-

ing DARPA Urban Challenge restrictions), the approaching

vehicles need to be detected at around 130 meters. In order

to obtain sufficient image pixels on a vehicle at that distance

Fig. 3. Stereo Vision Sensor: Inside the rig (left) and mounted on the
vehicle (right)

Fig. 4. WA (left) and NA (right) images. NA is a ROI of the original
full resolution image. WA is the subsampled reduced resolution image.
Notice how the narrower field-of-view of the NA image allows detection of
a vehicle much farther out.

while maintaining a wide-angle field of view, we decided

upon three (pairs of) 60-deg. high-resolution (1920×1080)

cameras (Imperx IPX-2M30H-L).

Each acquired high-resolution HD image (1920×1080) is

smoothed by a gaussian filter (to avoid aliasing artifacts)

and then subsampled to a resolution of 640×360 (henceforth

called Wide Angle or WA). Since this image is a subsampled

version of the acquired image, we get a full field-of-view

sensing of 60 degrees at one-third the resolution. At the

same time, we also extract a region-of-interest (ROI) of size

640×360 (henceforth called Narrow Angle or NA) from

the acquired high-resolution image to capture one-third of

the field-of-view (i.e. 20 degrees) at full resolution. Fig.4

illustrates how this design allows detection of both closer

and farther obstacles with a single high-resolution camera.

Dynamic selection of an appropriate ROI for the NA image

can allow software panning of camera look-at direction. In

our system we manually identified and fixed a suitable ROI

for each NA image (independently for the front, left and right

looking rigs). One stereo pair of cameras (stereo-rig) was

used for each of the front, left and right viewing directions

as depicted in Figs.1 and 2. This setup covered the visibility

requirement for typical urban navigation scenarios (Fig.5).

The following subsections describe in detail the vision

modules that were developed for the challenge.

B. Motion Detection

Moving traffic was an important component of the Urban

Challenge and to address the problem of detecting moving

objects specifically, we used a Motion Detection (MD)

module. To detect moving objects from an image sequence,

we need to compensate for host vehicle motion to nullify

the apparent motion of the static environment. However, if

the host vehicle is static, the motion compensation step can

be skipped. For our real-time system, we employed MD

whenever the host vehicle stopped thus addressing specific

situations e.g., “stopped at an intersection”.
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(a) Left Turn (b) Right Turn (c) Passing

Fig. 5. Sensor Coverage. This drawing illustrates the angular coverage of the three stereo vision sensors (cyan sectors) and the front and back lasers (blue
sectors) for the host vehicle executing a left-turn, a right-turn and a passing maneuver. Scenario schematics from the DARPA Urban Challenge guidelines.

Fig. 6. Motion Detection. In this view from the left-camera, the algorithm
computes a motion mask (right) from which the approaching vehicles are
detected directly (left).

The motion detection algorithm is run independently on

the left WA and the left NA image for each stereo pair. The

algorithm works as follows:

1) Compute a dense optical flow using images at two

successive timestamps and integrate over time.

2) On each frame, update a salience measure that is

proportional to pixel motion in a consistent direction.

For details, refer to [9], [10].

3) Filter the optical flow map in the salient regions to

detect regions with a motion component toward the

host vehicle.

4) Perform connected components analysis on the filtered

motion field above, find bounding boxes corresponding

to approaching vehicles and output the motion mask

for use by the vehicle-detector (Fig.6).

We employed motion detection dynamically whenever the

vehicle speed measure on the CAN bus was close to zero and

remained so for a small finite amount of time. A temporal

hysteresis was needed to ensure that the motion detection

was not triggered on an isolated zero value (spike). Note that

for the Urban Challenge, we assumed that the only objects

approaching our vehicle were other vehicles. This worked

quite well as a minimum blob size constraint proved enough

to filter out other motion.

C. Stereo Processing

We rely on dense stereo for an obstacle detection module

that reliably detects object boundaries and computes good

distance estimates.

We perform stereo processing on a high-end video pro-

cessing board - the Matrox Odyssey XPRO+. This board

provides both high-level (Odyssey Native Library) and low-

level (Odyssey Developer’s Toolkit) APIs for writing custom

image processing applications that can use an on-board

Pixel-Accelerator ASIC, a customizable co-processor FPGA

and a G4 PowerPC for control. We ported our real-time

stereo processing algorithm [11] to this board. The current

implementation gives us stereo output for the sub-sampled

640×360 (WA) images at 12 Hz without using the low-level

API (which can lead to a 2× speedup in the best case).

In practice, this proved to be sufficient for the host vehicle

speeds required in the Urban Challenge.

Note that for the Urban Challenge, generic obstacle detec-

tion was required only for closer ranges because at longer

ranges the system only needs to detect moving vehicles.

Therefore, we only computed dense stereo for the WA

images thus needing only one Matrox board per stereo pair.

D. Obstacle Detection

The stereo range-map at the lower resolution is used for

obstacle detection upto 30m. The obstacle detection (OD)

function (Fig.7) analyzes stereo derived range data together

with vehicle attitude to associate a traversal cost with the

3D structure discovered by the stereo process. The traversal

cost is in the form of a height (above a reference “ground”

surface) cost and a slope (local change relative to reference

surface) cost. The algorithm [12] compensates for ground

resolution variation, pre-filters the range image to reduce

noise and analyzes the data in XZ coordinates to create a

grid map. This analysis uses a multi-resolution technique to

estimate a function Yref that is used to compute the height

cost map for each XZ location. The spread of heights at

a single XZ location and differences in lowest elevation

between neighboring pixels classifies each map point as an

obstacle or not. Map pixels are aggregated to obtain cells of

a constant size on the ground near the camera and used to

estimate the slope cost.

The OD algorithm outputs a cost map (combining the

height and slope cost maps above) in the image space

which is a gray-level representation of the obstacle lethality

(opposite of traversability) estimates. The obstacles in the

scene are thus labeled with an intensity value of 255 while

things close to be on the ground have a score value close

to zero. The OD output for each stereo frame is converted

to the vehicle-centric coordinate system and subsequently

polygonized (around segmented obstacles) to overlay on the

map grid. The frame by frame OD algorithm flow is captured

below.
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(a) (b) (c) (d)

Fig. 7. Obstacle Detection. Output of the obstacle detection algorithm showing the color coded cost maps (b),(d) using both height and slope thresholds
for two typical urban scenarios. Also shown are the recovered obstacle polygons projected on the ground plane (a)(c). Notice the ability of the algorithm
to recover individual obstacles with good boundaries even in the presence of a large amount of clutter.

Fig. 8. Lane Detection. Green and red points are detected as the left
and right lane-markers respectively. Blue points are the remaining non-
lane features on the ground surface. Note how this detection of host lane
boundaries enables selective detection of only vehicles in the host vehicle’s
lane.

1) Filter stereo range image (dense 3D data) and perform

ground compensation.

2) Create an obstacle grid map (world XZ coordinates)

of a chosen resolution with each cell having a height

based cost and a (drivable) slope cost.

3) Based on thresholds on the combined height and slope

costs generate a cost map image, assigning an obstacle

lethality value (0-255) to each pixel and cluster 3D

points identified as lethal obstacles.

4) Segment the clustered obstacle points after projecting

the points on the ground XZ plane. Polygonize the re-

sulting obstacle boundaries (Fig.14 shows OD polygon

outputs).

E. Lane Detection and Tracking

In our system, lane detection (LD) was needed for two

reasons. First, to aid the vehicle detector in making intelligent

decisions about where to look and second, for autonomous

navigation in the case of GPS loss or sparse waypoints by

following lane boundaries. For both these purposes, we only

need to detect lane-markings to a short range of about 30-

35m and so we process only the WA images for this purpose.

Lane detection on the basis of image features only is

prone to failure. In urban scenarios, due to the presence of a

significant amount of clutter, spurious non-ground features

can get detected as lane-markers if only image intensity

information is used. To alleviate this problem, we make

use of the depth information in conjunction with the image

intensity information to guide our search. The algorithm [13]

works as follows:

1) Recover 3D structure from the dense stereo available

for WA images.

2) Identify 3D points that lie on the ground surface.

3) Fit a plane model to the ground surface.

4) Find lane markers on the detected ground surface using

local contrast and edge-pairing methods.

5) Fit a linear model to the lane markers. On curved roads,

fit a quadratic model of lane shape.

6) Track lane model with an Extended Kalman Filter

using available vehicle speed and yaw-rate (see Fig.8).

F. Vehicle Detection and Tracking

The detection of vehicles - both moving and static - is

at the core of the Urban Challenge problem and to address

scalability and real-time issues we developed a modular and

fast algorithm to detect the presence of a vehicle in any

specified image ROI. Specifically, we designed an algorithm

to detect specifically the front or the back of a vehicle.

While driving down a road we need to detect vehicles

that are directly ahead of us (to maintain proper gap or

to pass them in case they are stalled) and vehicles in the

oncoming lane (to avoid them before starting to pass). Also,

on intersections we need to detect vehicles approaching from

the front, left and right to properly merge into the traffic and

also detect vehicles which have arrived before us on their

stop lines (to do proper intersection precedence). Note that

in all the above cases, it is important to distinguish vehicles

from general obstacles as the behavior expected of the robot

is different on encountering a vehicle than it would be when

encountering some other obstacle. For example, in a parking

lot or a free zone, it is ok to label all vehicles as obstacles

as the expected behavior is to avoid these.

To handle any of the above situations, the vehicle detection

(VD) algorithm needs to look only for the back or front of a

vehicle. It is clear that the front cameras are always looking

at the front or back of vehicles. The left and right cameras

are only needed to handle the intersection scenarios and in

these cases, even those are only looking at the front or back

of vehicles (Figs.2 and 5).

Given an image ROI, the vehicle detection algorithm [13]

works as follows:

1) Filter the input left and right images to locate vehicle

like edge features.

2) Use the stereo depth map to compute a coarse scale of

the expected vehicle size. In case a depth map is not
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(a) (b) (c)

Fig. 9. Vehicle Detection. (a) Vehicle search ROIs selected on the basis of lane output, (b) output of VDs running on each of the three lanes (lane output
not shown) and (c) example of a typical urban scenario with two-way traffic.

available, compute a coarse depth estimate by stereo

matching on the edge features computed above1.

3) Apply sub-pixel epipolar constraints (around the coarse

scale determined above) to the detected features and

filter out inliers consistent with a single disparity value.

4) Group these inlier features using a prior model on the

3D arrangement of such features for the front or back

of a vehicle. If such a grouping is not possible, reject

the input ROI as a possible vehicle candidate.

5) Compute a bounding box around the grouped features

and apply a multi-layer adaboost classifier [14] to

verify if it is a vehicle. If verified, output as a candidate

vehicle box along with its distance estimate.

In order to achieve the required real-time performance,

we resort to a “lane-search” approach where we apply the

above algorithm to only specific discretized ROIs along a

particular lane of the road in order of increasing distance.

Once a vehicle is detected in a particular ROI, the search

for another vehicle in that lane is abandoned. The location

of these ROIs can come from the knowledge of the left

and right lane-boundaries (if available e.g. Fig.9(a)) or can

be fixed in the vehicle coordinate system by using the

(calibrated) ground-plane to camera transformation and/or

vehicle pitching information (from the Localization module).

In the actual system, we used the latter approach whenever

the lane-boundaries were not detected well. In addition to

performance speedup, another advantage of the lane-search

approach is that we can tune the VD to search for vehicles

only in specific lanes. We will describe in section III how we

adapt this to address the different urban challenge scenarios.

To further reduce false positives, we use the other available

system components to support VD. In NA imagery, MD is

a more reliable detector of approaching motion when the

host vehicle is stopped and can help eliminate false vehicle

detections from the left and right cameras. Similarly, in WA

imagery, OD is a reliable detector of all the short-range

obstacles (which include vehicles). Fig.10 depicts how we

use the MD and OD modules to reject FPs from VD.

After detecting the candidate vehicle boxes in all the

lanes, we track these vehicles across time using an Extended

Kalman Filter on the distance and image location of these

boxes. This provides us with range-rate (velocity) informa-

1Note that this approach does not specifically depend on the dense stereo
map and can therefore be used even for the NA image pairs (where we do
not compute dense stereo).

Fig. 10. Vehicle Detector FP removal. The motion mask from MD helps
verify the detection from VD (top row). The cost mask from OD verifies
the true detection from VD and correctly rejects the FP (bottom row). In
each case, an analysis of the overlap of the detected ROI with the binary
mask is used to verify or reject the detection.

tion which is critical to determining the safety envelope when

merging into moving traffic.

G. Localization

The Sarnoff Video Inertial Navigation System (VINS)

couples a GPS receiver, an IMU, and multiple cameras to

perform localization in both GPS-available and GPS-denied

areas. Detailed description of the VINS solution may be

found in [15]. A brief overview is provided in this section.

Central to the Sarnoff VINS solution is our Multi-camera

Visual Odometry algorithm. This algorithm estimates camera

pose (position and orientation) from image sequences and

employs the following steps:

1) Detect and match feature points in each stereo pair;

use epipolar and disparity constraints to eliminate false

matches.

2) Compute 3D locations corresponding to these feature

points using stereo triangulation.

3) Perform 2D-2D image feature matching over time to

establish 3D-2D point correspondences.

4) Estimate camera pose using a robust resection method

based on RANSAC followed by iterative refinement of

the winning hypothesis.

The Visual Odometry algorithm only provides relative

pose estimates. For absolute location and orientation in-
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Fig. 11. VINS Block Diagram.

Fig. 12. Vehicle path output by a commercial system (left) that integrates
a high-end GPS receiver with an IMU and the vehicle path recovered by
VINS (right) during experiments conducted in Princeton, NJ. The main loop
is around Palmer Square which has fully brick covered parts acting as an
‘urban canyon’.

formation, the Visual Odometry output is combined with

GPS and IMU information as shown in Fig.11, VINS Block

Diagram. Experiments (see for example Fig.12) have shown

that even when GPS signals are completely denied, VINS

localization drifts only 0.5-1% of the distance traveled.

III. SYSTEM INTEGRATION

We will now describe how the different perception compo-

nents were used together for robust environment perception

by our robot. We divided the problem of perception into

two different distance ranges - short range upto 40m and

long range from 40 to 130m. These subranges correspond to

the WA and NA imagery (described earlier) respectively. We

will prefix the letters SR and LR to the name of a module to

clarify whether it is running on a WA or a NA image (pair).

Fig.13 shows the data flow design of our system. Each

WA image pair is processed by the stereo unit to compute

a disparity map. This disparity map is utilized by the SRLD

and OD modules to compute the lanes (L) and obstacles (O)

respectively. At the same time, the SRMD module uses the

left-WA image to compute a motion mask and then a set

of approaching vehicles (Va). Similarly, the LRMD module

determines the approaching vehicles (Va) using the left-NA

image. For speed reasons, we do not run the stereo processor,

LD or the OD modules on the NA imagery.

Multiple VD modules are run for each stereo pair. For the

front camera, we run one VD for each lane on the WA images

Fig. 13. Flow of data between modules. For simplicity, we have omitted
the VINS module and also inputs like CAN data, IMU data etc.

TABLE I

COMBINATION OF MODULES UNDER DIFFERENT SCENARIOS

Scenario Front Sensor Output Left

Sensor

Output

Right

Sensor

Output

Driving

SRVD + OD → V

OD → O

SRLD → L

Off Off

Stopped
at non-
intersection

SRVD + OD → V

SRMD + OD → Va

LRVD + LRMD → Va

OD → O

SRLD → L

Off Off

Stopped at
intersection

SRVD + OD → V

SRMD + OD → Va

LRVD + LRMD → Va

OD → O

SRLD → L

Same as
Front

Same as
Front

thus detecting both vehicles ahead as well as oncoming upto

40m 9(c)(called the Short-Range Vehicle Detector SRVD).

Similarly, we run one VD for each lane on the NA images

for detection beyond 40m (called the Long-Range Vehicle

Detector LRVD). Also, when the host vehicle comes to

stop at an intersection, we switch the LRVD to look at an

expanded lane of 50m and filter out only approaching traffic

by using motion mask.

For the left and right cameras, we run a VD on the WA

images only on the lane corresponding to oncoming traffic.

This is because these cameras only help in the intersection

scenarios where specific detection of oncoming traffic is

more important (may be static or moving). For distance

beyond 40m, since we are only interested in approaching

traffic, we run one VD on an expanded lane of 20m (to take

care of curved roads) and filter out only approaching traffic

by using motion mask.

Table-I depicts the combination of different modules as

outlined above, divided by scenarios. This illustrates how

the different components helped make the system robust and

fail-safe while alleviating the need for any single component
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Fig. 14. System output for a cluttered urban scene. Vehicles and obstacles detected by the VD and OD modules respectively - image overlay (top row)
and overhead map representation (bottom row). Yellow polygon: Obstacle, green box: Vehicle, green or red polyline: Lane-Boundary.

to handle all situations all by itself.

IV. LESSONS LEARNED AND FUTURE WORK

Our system was used to drive an autonomous vehicle

during the DARPA Urban Challenge, showing that passive

sensing is capable of providing reliable perception of the

environment, especially for obstacle detection and track-

ing, and self-localization. Among the key lessons learned

during the development and testing phases was that close

co-operation between the vehicle planning and perception

modules can compensate for small azimuth errors (∼1m)

in sensing, but not for false positives in the path of the

vehicle. For this reason, we expended considerable effort

to use multiple cues (motion, appearance and depth) to

eliminate false positives ahead of the vehicle out to 30m.

System testing and operation also benefited considerably

from freezing of perception software development at least

one month prior to the Challenge and working around bugs

and missing features.

Future work will focus on more typical urban scenar-

ios. These present situations such as narrow lanes without

dividers, vehicles densely parked along curbs, unexpected

appearance of vehicles from hidden driveways and unpre-

dictable movement of people or animals. For path-planning

under limited GPS (due to urban canyons from tall build-

ings), information about unknown fixed infrastructure, e.g.,

buildings, road intersections, stop lines/signs, could be very

important since these provide information about potential

paths to take, or locations of traversable free space. In

dynamic and cluttered environments, the perception system

needs to not just detect obstacles in and around the robot’s

path, but also recognize whether the obstacle is a vehicle, a

truck, a bicycle, or a pedestrian, and whether the obstacles

are moving or stationary. In these scenarios, we believe that

vision-based perception, in combination with other sensors

like LIDAR and Radar, can exploit important visual cues

(e.g. brake light or turn signal of the vehicle ahead) and

provide a more complete representation of the environment.

V. ACKNOWLEDGMENT

The authors would like to thank the members of Team Au-

tonomous Solutions (Autonomous Solutions Inc and DeVivo

AST) for their contributions during system development and

testing. We would also like to thank our colleagues at Sarnoff

Corporation for their help and support at various stages of

the project.

REFERENCES

[1] “The DARPA Urban Challenge.” [Online]. Available: http://www.
darpa.mil/GRANDCHALLENGE/

[2] R. Siegwart and I. R. Nourbakhsh, Introduction to autonomous mobile

robots. Cambridge, MA: MIT Press, 2004.
[3] The 2005 DARPA Grand Challenge: The Great Robot Race, ser.

Springer Tracts in Advanced Robotics. Berlin / Heidelberg: Springer,
October 2007, vol. 36.

[4] “Volvo Collision Warning with Auto Brake.” [Online]. Available:
http://www.mobileye.com/uploaded/PressPDF/Volvo.AutoBrake.pdf

[5] A. Broggi, C. Caraffi, P. Porta, and P. Zani, “The Single Frame Stereo
Vision System for Reliable Obstacle Detection Used during the 2005
DARPA Grand Challenge on TerraMax,” Intelligent Transportation

Systems Conference, 2006. ITSC’06. IEEE, pp. 745–752, 2006.
[6] Sebastian Thrun and others, “Stanley: The robot that won the DARPA

Grand Challenge: Research Articles,” J. Robot. Syst., vol. 23, no. 9,
pp. 661–692, 2006.

[7] “Team MIT Urban Challenge Technical Report.” [Online]. Available:
http://hdl.handle.net/1721.1/39822

[8] “Team Tartan Racing Technical Paper.” [Online].
Available: http://www.darpa.mil/GRANDCHALLENGE/TechPapers/
Tartan Racing.pdf

[9] L. Wixson, “Detecting Salient Motion by Accumulating Directionally-
Consistent Flow,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 8, pp. 774–780, 2000.
[10] S. Das and M. Aggrawal, “Multiple object tracking using probabilistic

models,” White Paper, Sarnoff Corporation, May 2005.
[11] G. van der Wal, M. Hansen, and M. Piacentino, “The Acadia vision

processor,” Computer Architectures for Machine Perception, 2000.

Proceedings. Fifth IEEE International Workshop on, pp. 31–40, 2000.
[12] A. Stentz, A. Kelly, P. Rander, H. Herman, O. Amidi, R. Mandelbaum,

G. Salgian, and J. Pedersen, “Real-Time, Multi-Perspective Perception
for Unmanned Ground Vehicles,” Proc. of AUVSI Unmanned Systems

Symposium, vol. 2003, 2003.
[13] B. Southall et al., private communication, Sarnoff Corporation, 2005.
[14] P. Viola and M. Jones, “Rapid Object Detection using a Boosted

Cascade of Simple Features,” Proceedings IEEE Conf. on Computer

Vision and Pattern Recognition, 2001.
[15] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground

vehicle applications,” Journal of Field Robotics, vol. 23, 2006.

440


