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Abstract— Development of a practical stereo vision sensor
for real-world applications must account for the variability of
high-volume production processes and the impact of unknown
environmental conditions during its operation. One critical factor
of stereo depth estimation performance is the relative alignment
of the stereo camera pair. While imperfectly aligned stereo
cameras may be rectified in the image domain, there are some
errors introduced by both the calibration recovery and image
rectification processes. Finally, additional uncalibrated misalign-
ments, for example due to thermal or mechanical deformation in
a harsh automotive environment, may occur which will further
deteriorate stereo depth estimation. This paper describes an
experimental framework for determining these limits using image
processing algorithms, operating on graphically synthesized im-
agery, with performance envelope validation on real stereo image
data.

I. INTRODUCTION

Real-time stereo vision sensors have proven to be effective
in applications such as off-road robot navigation [1], terrain
map building [2], autonomous vehicle detection [3] and 3D
scene reconstruction for tele-immersion [4]. Use of such a
sensor in an automotive environment, however, requires a
quantitative analysis of the robustness of the stereo depth esti-
mation to manufacturing defects and environmental influences
(such as thermal deformation) on the stereo rig. In this paper,
we consider a parallel camera stereo configuration being used
in an automotive setting for target range estimation. The errors
introduced by the manufacturing process in the production of
an ideal stereo rig necessitate initial calibration of the rig.
The camera misalignments introduced in the vibration and
thermal deformation prone automotive setting coupled with the
calibration recovery errors may lead to large depth recovery
errors, affecting the efficiency of a stereo vision sensor. Conse-
quently, it becomes essential to know the misalignment bounds
within which the system is assured to produce sufficiently
accurate results for depth recovery of objects at typical ranges
of operation (0 to 30m in front of the vehicle) for applications
like collision avoidance. This paper proposes an experimental
framework for conducting an analysis that gives an estimate of
these bounds for a stereo vision sensor. The framework uses
graphically synthesized imagery to arrive at these bounds and
hence gives a practical analysis approach. Further, our use of
synthetic imagery is justified by validating them against a set
of real images for a particular car model.

II. RELATED WORK

There is a significant amount of published research on
characterization of range estimation errors based on system

parameters for stereo vision including [5], [6]. Most of this
analysis was carried out from the perspective of theoretical
modeling and categorization of errors for the stereo vision
based range computation process itself. The evaluation mea-
sures used to quantify these errors, however, remain useful for
a broader study of miscalibration and misalignment effects
as performed in our work. Given the gamut of advanced
stereo vision algorithms reported in literature [7], even if we
restrict ourselves to the computationally efficient (> 15Hz)
ones, we are still faced with the task of not just evaluating the
performance of each algorithm but analyzing the robustness
of a specific algorithm to external calibration and alignment
errors. There is not much work in this area in the vision
community.

In [8] a theoretical sensitivity analysis was performed for a
real-time stereo vision system. However, to understand the true
effects of misalignment in yaw, pitch and roll (YPR) angles
of the cameras on a stereo rig, an experimental evaluation is
needed to better quantify the effects which cannot be predicted
theoretically and to back up the theoretical predictions. This
poses the challenge of creating experimental data for arbitrary
ranges of camera miscalibration and misalignments along with
ground truth range data. Most studies (e.g. [9]) comparing
accuracy of stereo depth estimation were done using synthetic
data as ground truth depth information is hard to obtain for
realistic scenes. However, in spite of the increasing power
of graphics based 3D rendering, there has been no formal
validation of synthetic images against real images of the same
object in the context of stereo vision. Also, the available real
scene data sets are very restricted in scope - they do not
incorporate a wide variety of poses and distances from the
cameras as is required in the automotive setting.

In summary, given a choice of real-time stereo algorithm
with known (theoretical) performance on an ideal camera rig,
there is still a need to develop an analysis framework using
synthetic images (validated against identical real images) to
quantify the tolerances of the stereo depth estimation to camera
miscalibration and misalignment present in a manufactured rig.
We propose to address this issue, which is especially important
for automotive vision, in the current work.

III. STEREO VISION SENSOR

Stereo Vision Sensor (SVS) robustness analysis can be
carried out with respect to errors in stereo rig baseline,
left and right camera focal lengths and YPRs (Yaw, Pitch
and Roll) arising due to miscalibration and misalignment.
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Fig. 1. Stereo Vision Sensor with camera axes and convention for YPR

In this analysis, we focus on rotational errors (YPR) rather
than translational (XYZ, which includes baseline) because
the former are expected to dominate the latter. However, the
framework presented in this paper can be extended to include
the other parameters as well.

The SVS used for this analysis is a pair of cameras which
are parallel to each other and perpendicular to the baseline
(ideal stereo rig). The convention for YPR is as given in the
Fig. 1. Our SVS runs Sarnoff Acadia™ Stereo [10] which uses
SAD matching windows for computing correspondences.

IV. MEASURES FOR STEREO ANALYSIS

To evaluate the stereo performance under miscalibration
and misalignment present in a manufactured rig, we need a
quantitative way to estimate the quality of the resulting depth
and disparity maps.

The stereo quality metrics can be defined depending on the
target application using the stereo output. For example, for
an application requiring the range estimate of a target, error
in average or median depth is a good metric. However, for
a stereo-based vehicle detection and classification application
which uses local features for shape estimation, a metric that
evaluates error in the local depth variation will be required. In
this analysis, we focus on global measures like average and
median depth within a predefined Region of Interest (ROI).

For evaluating the effect of miscalibration and misalignment
on the stereo performance, we need to compare the stereo
output in the misaligned case with that in the ideal case thus
precluding the need for ground-truth depth. For this analysis,
we define the following stereo quality metrics:

1) Average Depth: The average of the depth values at the
non-void pixels within the ROL

2) Median Depth: The median of the depth values at the
non-void pixels within the ROL.

3) Standard Deviation of Depth: The standard deviation
of the depth values at the non-void pixels within the
ROLI.

4) Depth Histogram: The histogram of the depth values
at the non-void pixels within the ROL

5) Disparity Void Percentage: The percentage of pixels
within the ROI where the stereo returned a void in
disparity due to insufficient image texture, low stereo
matching energy or a non-unique stereo matching re-
sponse.

V. THE ANALYSIS FRAMEWORK

In this section, we detail the analysis framework which
involves acquisition of real data and generation of synthetic
data (section V-A) followed by validation of the synthetic data
(section V-B). Then, we determine the theoretical limits of
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Fig. 2. Front, Rear, Side, Diagonal-Front and Diagonal-Rear poses of the
Dodge Viper: Synthetic (first row) and Real (second row).

acceptable calibration errors and misalignment in section V-
C. In sections V-D to V-G, we discuss our experimental
analysis methodology for determining acceptable stereo rig
manufacturing and environmental misalignment tolerances. An
outline flowchart for the methodology is given in Fig. 11.

A. Data Acquisition and Generation

To estimate the robustness of a stereo vision sensor for
practical automotive applications, we need a dataset that corre-
sponds to the actual automotive setting as closely as possible.
To arrive at the calibration recovery and misalignment limits,
we need a system that allows us to capture data for various left
and right camera YPRs without much effort. It is expensive
as well as impractical to capture such a huge dataset in the
real world, and we thus need to explore a synthetic means
of generating data. We however need to validate the synthetic
data with the real data to ensure that the stereo performance
is comparable in the two cases.

We chose Dodge® Viper RT/10 for our analysis because
similar real (scaled model available from Revell-Monogram)
and graphical models for the same were easily available.
We capture real stereo imagery and generate synthetic stereo
imagery (using OpenGL® graphics API) of different poses of
a Dodge Viper kept at different distances (5.4m to 25.4m)
measured between the Dodge Viper bounding box center and
the camera. The minimum distance constraint was due to
the hood length of the host car (on which the SVS will be
mounted) and the (target) Dodge Viper length. This setting
closely resembles the scenario where the system will actually
be used - both in terms of the target as well as distances. A set
of different poses was chosen due to the variability in edge
and depth information associated with each pose. A sample
set of images from the real and synthetic dataset (with the
Dodge Viper at 10.4m) is shown in Fig. 2. For this analysis,
we define the ROI to be the rectangular portion of the image
occupied by the Dodge Viper.

B. Validation of Synthetic Data

Validation of synthetic data against real data for stereo
performance evaluation is essential to ensure that the limits
computed by evaluating stereo performance on synthetic data
are close to the actual limits.

Synthetic data comprising of stereo views of different poses
of the Dodge Viper at different distances, corresponding to an
ideal stereo rig, is generated. Real data collection involves
emulation of an ideal stereo rig (which is difficult to construct
and verify) using a single camera. A single camera is aligned
with the world coordinate system and the left image is
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Fig. 3. Validation of Synthetic Data
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Fig. 4. Comparison of Depth Histograms within the ROI for Real and
Synthetic images (Front and Side poses of the Dodge Viper at 10.4m) with
Ground Truth Depth Histograms.

captured. It is then translated along the baseline to capture
the right image. The stereo procedure is run on the real and
the synthetic data and the quality metrics are evaluated on the
generated depth and disparity maps. The metrics for the two
cases are then compared for validating the synthetic data.

Fig. 3 outlines the basic steps in the validation of synthetic
data. Fig. 4 compares the depth histograms for stereo output
on the real and synthetic data with the ground-truth depth
histograms. The ground-truth was obtained from the synthetic
data. The histogram gives a general picture of the depth-
variation and the comparison shows that the synthetic data
is close to the real data.

Fig. 5 compares the average depth recovered by stereo for
real and synthetic images with the ground-truth average depth.
This comparison further validates the synthetic data for stereo
performance analysis.

C. Theoretical Limits Analysis

In this section, we determine theoretical limits on calibration
errors and stereo rig misalignments for a particular threshold
on the depth error. This helps constrain the search space for
manufacturing and misalignment tolerances. Error in Yaw and
Roll of the right camera relative to the left camera introduces
an error in disparity due to a horizontal shift (Ax) of the
corresponding point in the right image. Error in Pitch and Roll
of the right camera relative to the left camera also shifts the
corresponding point vertically (Ay) in the right image. This
may lead to mismatches or voids in the disparity map during
correspondence.

Front Pose

Side Pose

— Real Data
—— Synthetic Data

012345678910 12 14 16 18 20
Actual Depth of car center (x+5.4) m

—— Real Data
—— Synthetic Data

012345678910 12 14 16 18 20
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Fig. 5. Comparison of the Average Depth within the ROI recovered by the
Stereo for Real and Synthetic images (Front and Side poses) of the Dodge
Viper with Ground Truth Depth.

The focal length of the left camera along the x-direction
is denoted by f, (in pixels) and along the y-direction by f,
(in pixels), the stereo rig baseline by b (in meters), the image
width by w (in pixels), the image height by & (in pixels), and
the depth of the point under consideration by Z (in meters).

1) For a Yaw error of AY (in radians), the depth error (in

m) is:

-z 1

2) For a Pitch error of AP (in radians), the magnitude
of vertical shift (in pixels) for a scanline at a vertical
distance of y. pixels from the image center is:

NZ =

Ay = 2y AP 2)

3) For a Roll error of AR (in radians), the maximum depth
error (at the top and bottom edges of the image) and the
maximum vertical shift (at the left and right edges of
the image) are:

hz?
2

In this analysis, we fix the maximum error in depth to be
1 m for a target at 10 m. Using this depth error threshold,
the values of AY and AR were computed. Assuming that a
shift of more than one scanline would deteriorate the stereo
quality greatly, the values of AP and AR were computed (by
thresholding on Ay). Since the effect of AR is significant only
at the image edges, we take the maximum of the two values
computed above to study the combined effect in the image
interior.

For our SVS, with f, = 783.0 pixels, f, = 391.5 pixels,
b=0.18 m, w= 720 pixels and h = 240 pixels, the values
were found to be AY = 0.1 degrees, AP = 0.2 degrees and
AR = 0.4 degrees (after rounding) and will be used as the
theoretical limits of magnitude of calibration errors (E.) and
magnitude of stereo rig misalignments (L!,) for further analysis
(Fig. 11).

D. Calibration Recovery Limits Analysis

ANZ

AR, Ay= V—;AR 3)

The stereo rig intrinsics may vary slightly for every unit
manufactured. Thus, a calibration step is needed to estimate
the unknown values of the rig intrinsics. However, the stereo
calibration procedure is itself error prone and the amount of
errors introduced in the calibration step directly affect the
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amount of external misalignment the rig can tolerate. The more
the calibration errors, the less is the external misalignment
tolerable for a given degradation in stereo quality. It there-
fore becomes essential to estimate the amount of calibration
errors for a given stereo rig with non-zero YPRs (because
of manufacturing variability). In our analysis, we estimate
the calibration errors for the Camera Calibration Toolbox for
Matlab (by Jean-Yves Bouguet at Caltech), which is a practical
and robust calibration procedure and can be easily automated.

The Calibration Toolbox requires the stereo images of a
checkerboard pattern in different 3D orientations and at differ-
ent distances from the camera which we generate synthetically
using OpenGL®. The YPRs of the left and right cameras are
varied through a wide range of values at a fixed discretization
considering all possible combinations. The table below gives
these ranges and discretization for our experiment.

Parameter | Test Range | Test Discretization
(degrees) (degrees)
Yaw -3.0,3.0 1.0
Pitch -3.0,3.0 2.0
Roll -3.0,3.0 3.0

The calibration procedure is applied to the generated se-
quences and the YPR recovery error (E.) for each pair of
left and right camera YPRs is computed. Using the theoretical
limits on the magnitude of calibration errors (E.) computed
in section V-C, the YPR calibration recovery limits (£L.)
are computed by considering those YPR combinations which
satisfy (a) |E;| < E. and (b) the sum of theoretical depth
errors due to errors in each of Yaw, Pitch and Roll recovery
(by eqns.1-3) is less than 1 m. For our SVS system, the
limits obtained are shown in the table below along with the
theoretical depth error sum (described above).

Calibration Recovery Limits (+L.) Theoretical Depth Error
(degrees) (m)
Yaw Pitch Roll
2.0 1.0 3.0 0.65
3.0 1.0 1.0 0.80

E. Misalignment Tolerances Analysis

Given a perfectly calibrated ideal stereo rig, it is essential to
determine the unknown misalignment that the rig can tolerate
before the stereo quality degrades beyond a given threshold.
In an automotive setting, there are several reasons why this
misalignment may happen e.g. vibrations of the rig mounted
in an automobile moving on an uneven terrain or the difference
in the thermal characteristics of the environment where the rig
is used from those of the calibration environment (leading to
expansion/contraction and bending of the rig assembly).

The synthetic data (stereo views of different poses of
the Dodge Viper at different distances) corresponding to an
ideal stereo rig generated for validation of synthetic data is
used for misalignment analysis. A set of right camera YPR
misalignments is chosen considering every possible combina-
tion of Yaw, Pitch and Roll misalignment within the bounds
determined by the theoretical analysis (£L},) (in section V-C).
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Fig. 6. Disparity Void Percentage and Standard Deviation of Depth within the
ROI for Side pose of the Dodge Viper with variation in Yaw, Pitch and Roll
misalignments unrolled on the x-axis. For each Yaw misalignment, the Pitch
misalignment is varied over the complete range. For each Pitch misalignment,
the Roll misalignment is varied over the complete range. Horizontal lines
denote the ideal case (without misalignment) disparity void percentage and
depth standard deviation within the ROI. The vertical gray bands are the
regions where the pitch is maximum.

Fig. 7. Left Image, Depth Maps for Ideal case and for a Pitch misalignment
of -0.2 degrees (AY = AR = 0) for Side pose of Dodge Viper at 25.4 m from
the camera.
Since it is only the misalignment of the right camera relative
to the left camera that affects the stereo quality, we pass the
generated (ideal) synthetic data through the stereo procedure
setting the left camera to be ideal and the right camera to
be misaligned within the chosen set of misalignments. We
evaluate the quality metrics on the generated disparity and
depth maps and determine the misalignment limits (£L,,) for
which the metrics are found to be within the set thresholds.
The table below gives the range of Yaw, Pitch and Roll
misalignments along with the discretization at which we
performed the analysis. Figs. 6-8 show some of the results
obtained from the misalignment analysis.

Parameter Range Discretization
(degrees) (degrees)
Yaw —0.10,0.10 0.02
Pitch —0.20,0.20 0.10
Roll —0.40,0.40 0.08

Fig. 6 indicates the effect of Pitch misalignment on stereo
quality. It can be noticed that the highest peaks in the disparity
void percentage and standard deviation depth appear in the
gray bands corresponding to the maximum pitch misalignment.
This can be attributed to the correspondence errors due to
scanline shifts. This effect of change in depth distribution
is clearly visible in Fig. 7 where the depth map with Pitch
misalignment of -0.2 is compared with the ideal case depth
map.

Figs. 8(a) & 8(b) show that the error in average depth
varies linearly with Yaw and Roll misalignments, as expected
theoretically (eqns.1,3). The variation with Yaw, however,
becomes non linear at larger distances (e.g. 25.4m) indicating
deviation from theoretical prediction.

Fig. 8(c) gives the combined effect of Yaw and Roll
misalignment on the average depth error. It indicates that the
line of zero error corresponds to a combination of Yaw and
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Fig. 8.  Variation of error in Average Depth within the ROI (a) with Yaw
misalignment (AP = AR = 0), (b) with Roll misalignment (AY = AP = 0)
and (c) with Yaw and Roll misalignment (AP = 0) for the Side pose of the

Dodge Viper. (a) & (b) are for different distances and (c) is for the target at
10.4m.

Roll Missbgnmant

Roll misalignment where they have the same sign. This is
because the chosen ROI is in the lower vertical half of the
image (not symmetric about the image center). Thus a positive
Roll misalignment will increase the disparity while a positive
Yaw misalignment will decrease the disparity thus cancelling
the two effects and reducing the depth error. Similar is the
case when both are negative.

The table below gives the misalignment limits (+L,,) ob-
tained for our SVS for a depth error threshold of 1 m on
average and median depth metrics.

Depth Error Misalignment Limits (+-L,,)
Threshold Using Average Depth | Using Median Depth
(m) (degrees) (degrees)
Yaw Pitch | Roll Yaw Pitch | Roll
0.06 0.2 0.08 0.08 0.2 0.08
0.04 0.2 0.32 0.06 0.2 0.24
1.00 0.02 0.2 0.40 0.04 0.2 0.40
0.06 0.1 0.16
0.04 0.1 0.40

F. Warping Analysis

The misalignment limits (£L,,) estimated above are for an
ideal stereo rig. In case the rig was found to be non-ideal
when calibrated (as is usually the case), there will be an
additional loss of stereo quality due to warping of left and
right images for alignment. Thus, it is imperative to account
for the effect of warping before reporting the misalignment
limits. In this analysis, we start by generating synthetic data
by considering all possible combinations of left and right
camera YPRs (8 x 8 combinations) at the calibration recovery
limits (£L.) determined above. The generated data is passed
through the stereo procedure setting the left camera at the
actual YPR chosen and the right camera at the actual YPR
chosen plus a misalignment at the misalignment limit (+L,,)

Rear Pose — Average Depth with Outlier Rejection Rear Pose - Median Depth

— Maximum Average Depth
— Minimum Average Depth
— Ideal Average Depth

— Maximum Median Depth
— Minimum Median Depth
— Ideal Median Depth

Median Depth within the ROI (+5.4 m)

Average Depth within the ROI (+5.4 m)

Distance of the Dodge Viper from the camera (+6.4 m)

(2) (b)
Fig. 9. Comparison of minimum and maximum (a) Average Depth with
Outlier Rejection and (b) Median Depth within the ROI for left and right

camera YPRs at 1.0 degrees with the Ideal case Stereo output for different
distances of the Dodge Viper center.

N

Fig. 10. Left Image, Depth Maps for Ideal case and for a non-ideal stereo
rig with Left camera YPR at (1.0, 0.0, 1.0) and Right Camera YPR at (1.0,
-1.0, 1.0) and no additional misalignment, for Rear Pose of the Dodge Viper
(at 10.4m).

%0 7 16 14 12 d0 o © 7 & & 4 8 5 1 0
Distance of the Dodge Viper from the camera (+5.4 m)

determined above. We evaluate the quality metrics to test if
they are within the set thresholds. If yes, then £L,, and +L.
are the required misalignment and calibration recovery limits
respectively. If not, then we repeat the above process after
reducing the values for the calibration recovery limits (+L;.)
or the misalignment limits (3+L,,) depending upon where we
require looser tolerances.

Figs. 9 and 10 illustrate the effect of warping (without
misalignment) on the stereo performance for our SVS system,
which uses Bicubic Warping, by comparing the quality metrics
and the depth maps with the ideal case.

The average depth estimates were found to be quite noisy
for a non ideal stereo rig because of a large number of outliers
resulting from stereo mismatches. Fig. 9(a) shows the Average
Depth estimates after employing a coarse outlier rejection
strategy (pruning the points outside a 30.0 m window around
the actual depth).

Fig. 9(b) shows that the median depth estimate is more
robust to warping and is closer to the ideal case estimates.
Thus, it is more suitable for practical use - a result which is
not evident from a theoretical framework.

An increase in void percentage can be observed by compar-
ing the depth maps in Fig. 10, which correspond to the ideal
case and the warping case (with no additional misalignment)
respectively. This is because warping leads to texture distortion
and aliasing, which may result in low stereo matching energy
or a non-unique stereo matching response.

For our SVS system the estimated Calibration Recovery and
YPR Misalignment Limits for the median depth metric are
shown in the table below. For a stereo rig manufactured within
a YPR tolerance given by +L., the misalignment limits (+L,,)
include the calibration errors (E,) (corresponding to +L.) and
the unknown environmental misalignments. Thus, the latter is
given by +(L,, — E;) and is shown in last column of the table.
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Median Calibra- Misalign- | Calibra- Environ-
Depth tion ment tion mental
Error Recovery Limits Errors Misalign-
Limits ment
Limits
(iLz') (iLm) (iEz) i<Lm'EL')
(m) (degrees) (degrees) (degrees) (degrees)
Y | 1.0 0.06 0.01 0.05
1.0 P |10 0.20 0.02 0.18
R | 10 0.08 0.02 0.06

G. Performance Envelope Validation

The misalignment and calibration recovery limits need to be
validated for real data to ensure that they were not affected by
artifacts in synthetic imagery (e.g. aliasing, single point focus
etc). Also, the noise and distortion introduced by the actual
camera can throw the stereo quality in either direction.

It is difficult to configure a stereo rig with a given set of
left and right camera YPRs (which we want to set at £L.)
so we emulate a stereo rig using a single Pan-Tilt camera.
We configure it for desired left camera YPR (for Roll, we
mount the camera on a rotatable axle), take the left image
and translate the camera along the baseline direction. We
reconfigure the camera for the desired right camera YPR and
take the right image. Once the data has been acquired, the
remaining steps are the same as the Warping Analysis.

For our SVS sytem, the experiments performed with real
data showed that the limits, determined by the warping anal-
ysis using synthetic data, were consistent with the real data.

VI. CONCLUSION

By outlining a practical approach to the robustness analysis
of a stereo vision sensor, this contribution enables selection
of design and manufacturing procedures for a stereo rig with
quantifiably predictable performance over time, under varying
environmental conditions. The trends observed using this
experimental framework prove that a theoretical framework
is not enough to gauge the performance of a given stereo
vision sensor. Further, it allows identification of stereo output
characteristics which are robust to misalignments (e.g. median
depth identified for our SVS) and hence can be used by
algorithms (which use stereo output) to counter misalignments.
To conclude, we hope that this framework will enable the use
of stereo vision sensors for automotive safety and convenience.

ACKNOWLEDGMENT

The authors would like to thank Stephen Decker and Salah
Hadi from Autoliv Electronics, North America for their con-
tribution and support.

REFERENCES

[1] A. Reider, B. Southall, G. Salgian, R. Mandelbaum, H. Herman,
P. Rander, and T. Stentz, “Stereo perception on an off-road vehicle,”
in Intelligent Vehicles Symposium, vol. 1. 1EEE, June 2002, pp. 221-
226.

R. Mandelbaum, L. Mcdowell, L. Boggoni, B. Reich, and M. Hansen,
“Real-time stereo processing, obstacle detection, and terrain estimation
from vehicle-mounted stereo cameras,” in Proc. Workshop on Applica-
tions of Computer Vision, vol. 1. 1EEE, October 1998, pp. 288-289.
M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele, “Stereo vision-
based vehicle detection,” in Intelligent Vehicles Symposium. Dearborn,
MI: IEEE, October 2000, pp. 39-44.

Fig.

Determine theoretical limits of
Calibration errors (£E¢) and stereo
rig misalignments (£L?,).

| Generate SYNTHETIC data| |
1| - Left YPR =0,

- Right YPR = 0
i

‘
‘
' |

i P 1

' Run Stereo with:

_Left YPR = 0,

' - Right YPR € [—L!,, L]

' i and evaluate measures

I | ¢

| L
Determine the YPR | !
Calibration recovery -
limits (+Le) for which [
|Ec| < Bt [

Generate SYNTHETIC dat:
for a Calibration Target

Misalibnmenl Tolerances Analysis

Run the Calibration and | 1
compute calibration |

errors (E,)

Determine the YPR
misalignment limits (L.,)
for which measures

are within threshold

Calibration Recovery Limits Analysis

‘ | ‘
i Generate SYNTHETIC data] !
! - Left YPR € [~Le, Lo, '
! - Right YPR € [~Le, L] | 1
H I
! I
i ¢ '
@ | Reduce the values Run Stereo with: !
ES of the YPR Calibration - Left YPR € [-Le, Lc], !
8! | Recovery Limits (L) - Right YPR '
<! €[~Le— Lin, Le + Lin] | 1
o, and evaluate measures '
c! 1
£ |
o' '
= I

Values of the
depth and disparity

NO
measures within the
threshold?

Generate REAL data with] |
! - Left YPR € [~Lq, L),
' - Right YPR € [L., L]

! Reduce the values Run Stereo with: !
21| of the YPR Calibration - Left YPR € [~ L, L), 1
| Recovery Limits (+L,) - Right YPR

€ [~Lc— L, Le + Lm]
and evaluate measures 1

Values of the
depth and disparity

measures within the
threshold?

11.  Flowchart for estimating limits on Camera Misalignments and

Calibration Recovery.
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